Ultra-compact modulators based on novel CMOS-compatible plasmonic materials

We propose several planar layouts of ultra-compact plasmonic waveguide modulators that utilize alternative CMOS-compatible materials. The modulation is efficiently achieved by tuning the carrier concentration in a transparent conducting oxide layer, thereby tuning the waveguide either in plasmonic resonance or off-resonance. Resonance significantly increases the absorption coefficient of the plasmonic waveguide, which enables larger modulation depth. We show that an extinction ratio of 86 dB/um can be achieved, allowing for a 3-dB modulation depth in less than one micron at the telecommunication wavelength. Our multilayer structures can potentially be integrated with existing plasmonic and photonic waveguides as well as novel semiconductor-based hybrid photonic/electronic circuits.

[1]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[2]  Xiaobo Yin,et al.  Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales , 2011 .

[3]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[4]  Kristjan Leosson,et al.  Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths. , 2011, Optics letters.

[5]  A. Zayats,et al.  Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. , 2012, Physical review letters.

[6]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[7]  Wolfgang Freude,et al.  Surface plasmon polariton absorption modulator. , 2011, Optics express.

[8]  Mark D. Losego,et al.  Surface plasmon resonance in conducting metal oxides , 2006 .

[9]  Alexandra Boltasseva,et al.  Semiconductors for plasmonics and metamaterials , 2010, 1108.1529.

[10]  Bernhard Lamprecht,et al.  Surface plasmon propagation in microscale metal stripes , 2001 .

[11]  A. Boltasseva,et al.  Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Viktoriia E. Babicheva,et al.  Plasmonic modulator optimized by patterning of active layer and tuning permittivity , 2012, 1202.6559.

[13]  Harry A. Atwater,et al.  Plasmonics: Metal-worthy methods and materials in nanophotonics , 2012 .

[14]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[15]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[16]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[17]  Wangshi Zhao,et al.  Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides , 2012, IEEE Photonics Journal.

[18]  Xiang Zhang,et al.  Toward integrated plasmonic circuits , 2012 .

[19]  P. Berini Long-range surface plasmon polaritons , 2009 .

[20]  Jagdish Narayan,et al.  Epitaxial Growth of TiN Films on (100) Silicon Substrates by Laser Physical Vapor Deposition , 1992 .

[21]  Alexandra Boltasseva,et al.  Oxides and nitrides as alternative plasmonic materials in the optical range [Invited] , 2011 .

[22]  Viktoriia E. Babicheva,et al.  Plasmonic finite-thickness metal–semiconductor–metal waveguide as ultra-compact modulator , 2013, 1301.5603.

[23]  P. Berini,et al.  Passive integrated optics elements based on long-range surface plasmon polaritons , 2006, Journal of Lightwave Technology.

[24]  A. Kildishev,et al.  Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials , 2012, Proceedings of the National Academy of Sciences.

[25]  A. Boltasseva,et al.  A comparative study of semiconductor-based plasmonic metamaterials , 2011, 1108.1531.

[26]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[27]  Viktoriia E. Babicheva,et al.  Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide , 2012, 1203.3374.

[28]  T. Sands,et al.  Titanium nitride as a plasmonic material for visible wavelengths , 2010, 1011.4896.