Universal portfolios in stochastic portfolio theory

Consider a family of portfolio strategies with the aim of achieving the asymptotic growth rate of the best one. The idea behind Cover's universal portfolio is to build a wealth-weighted average which can be viewed as a buy-and-hold portfolio of portfolios. When an optimal portfolio exists, the wealth-weighted average converges to it by concentration of wealth. Working under a discrete time and pathwise setup, we show under suitable conditions that the distribution of wealth in the family satisfies a pathwise large deviation principle as time tends to infinity. Our main result extends Cover's portfolio to the nonparametric family of functionally generated portfolios in stochastic portfolio theory and establishes its asymptotic universality.

[1]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[2]  Elad Hazan AN ONLINE PORTFOLIO SELECTION ALGORITHM WITH REGRET LOGARITHMIC IN PRICE VARIATION , 2015 .

[3]  Ludwig B. Chincarini,et al.  Quantitative Equity Portfolio Management: An Active Approach to Portfolio Construction and Management , 2006 .

[4]  Steven C. H. Hoi,et al.  Online portfolio selection: A survey , 2012, CSUR.

[5]  A. Barron,et al.  Efficient Universal Portfolios for Past‐Dependent Target Classes , 2003 .

[6]  Ting-Kam Leonard Wong Optimization of relative arbitrage , 2014, 1407.8300.

[7]  S. R. Jammalamadaka,et al.  Empirical Processes in M-Estimation , 2001 .

[8]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[9]  L. Wasserman,et al.  The consistency of posterior distributions in nonparametric problems , 1999 .

[10]  E. Fernholz Stochastic Portfolio Theory , 2002 .

[11]  Adrian D. Banner,et al.  HYBRID ATLAS MODELS , 2009, 0909.0065.

[12]  C. Patel Optimal versus Naive Diversification: How Inefficient Is the 1/N Portfolio Strategy? , 2009 .

[13]  A. Ganesh,et al.  A large-deviation principle for Dirichlet posteriors , 2000 .

[14]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[15]  M. Cetron,et al.  Biodiesel production : a preliminary study from Jatropha Curcas , 2013 .

[16]  F. Jamshidian Asymptotically Optimal Portfolios , 1992 .

[17]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[18]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[19]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[20]  G. Lugosi,et al.  NONPARAMETRIC KERNEL‐BASED SEQUENTIAL INVESTMENT STRATEGIES , 2006 .

[21]  Volatility and Arbitrage , 2016, 1608.06121.

[22]  T. Cover Universal Portfolios , 1996 .

[23]  Soumik Pal Exponentially concave functions and high dimensional stochastic portfolio theory , 2016, Stochastic Processes and their Applications.

[24]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[25]  I. Karatzas,et al.  Stochastic Portfolio Theory: an Overview , 2009 .

[26]  Ting-Kam Leonard Wong,et al.  The geometry of relative arbitrage , 2014, 1402.3720.

[27]  Ting-Kam Leonard Wong,et al.  Exponentially concave functions and a new information geometry , 2016, ArXiv.

[28]  R. Nickl,et al.  Nonparametric Bernstein–von Mises theorems in Gaussian white noise , 2012, 1208.3862.

[29]  Adrian D. Banner,et al.  Atlas models of equity markets , 2005, math/0602521.

[30]  Ting-Kam Leonard Wong,et al.  Energy, entropy, and arbitrage , 2013, 1308.5376.

[31]  Yoram Singer,et al.  On‐Line Portfolio Selection Using Multiplicative Updates , 1998, ICML.