Developing paradigms of chemical bonding: adaptive natural density partitioning.

A method of description of the chemical bonding combining the compactness and intuitive simplicity of Lewis theory with the flexibility and generality of canonical molecular orbital theory is presented, which is called adaptive natural density partitioning. The objects of chemical bonding in this method are n-center 2-electron bonds, where n goes from one (lone-pair) to the maximum number of atoms in the system (completely delocalized bonding). The algorithm is a generalization of the natural bonding orbital analysis and is based on the diagonalization of the blocks of the first-order density matrix in the basis of natural atomic orbitals. The results obtained by the application of the algorithm to the systems with non-classical bonding can be readily interpreted from the point of view of aromaticity/antiaromaticity concepts. The considered examples include Li4 cluster and a family of planar boron clusters observed in molecular beams.

[1]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[2]  P. Fowler,et al.  Ring currents in a proposed system containing planar hexacoordinate carbon, CB(2-)(6). , 2002, Chemistry.

[3]  Pedro Salvador,et al.  Electron sharing indexes at the correlated level. Application to aromaticity calculations. , 2007, Faraday discussions.

[4]  Donald G. Truhlar,et al.  Valence bond theory for chemical dynamics , 2007, J. Comput. Chem..

[5]  L. Hanley,et al.  Production and collision-induced dissociation of small boron cluster ions , 1987 .

[6]  R. Carbó-Dorca,et al.  Electron delocalization and aromaticity in linear polyacenes: atoms in molecules multicenter delocalization index. , 2006, The journal of physical chemistry. A.

[7]  P. Fuentealba A MODIFIED VERSION OF THE ELECTRON LOCALIZATION FUNCTION (ELF) , 1998 .

[8]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[9]  R. S. Mulliken Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations , 1932 .

[10]  István Mayer,et al.  Charge, bond order and valence in the AB initio SCF theory , 1983 .

[11]  John E. Carpenter,et al.  Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure , 1988 .

[12]  K. C. Mundim,et al.  Definition of a multicenter bond index , 1990 .

[13]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[14]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[15]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[16]  I. Mayer On bond orders and valences in the Ab initio quantum chemical theory , 1986 .

[17]  J. Aihara B13+Is Highly Aromatic , 2001 .

[18]  Toshimasa Ishida,et al.  Aromaticity of planar boron clusters confirmed. , 2005, Journal of the American Chemical Society.

[19]  I. Agranat,et al.  Overcrowded twisted bi-4H-cyclopenta[def]-phenanthren-4-ylidene versus bi-9H-fluorenylidene, syn pyramidalization , 1990 .

[20]  Alexander I Boldyrev,et al.  All-metal aromaticity and antiaromaticity. , 2005, Chemical reviews.

[21]  J. Gauss,et al.  Calculation of spin-current densities using gauge-including atomic orbitals , 2004 .

[22]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[23]  Tapas Kar,et al.  Three-center bond index , 1990 .

[24]  Paul von Ragué Schleyer,et al.  Introduction: DelocalizationPi and Sigma , 2005 .

[25]  R. Gijbels,et al.  Potential energy surface of B4 and total atomization energies of B2, B3, and B4☆ , 1992 .

[26]  R. Fulton Sharing of electrons in molecules , 1993 .

[27]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[28]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[29]  Patrick W. Fowler,et al.  Structure and Bonding in B6 - and B6: Planarity and Antiaromaticity , 2003 .

[30]  J. M. Ugalde,et al.  The Curiously Stable Cluster and its Neutral and Anionic Counterparts: The Advantages of Planarity† , 2000 .

[31]  S. Ruatta,et al.  Boron cluster ion oxidation: Reactions with CO2, dissociation of boron cluster oxide (BnO+) ions, and sequential oxidation , 1991 .

[32]  Lai‐Sheng Wang,et al.  Aromaticity and antiaromaticity in transition-metal systems. , 2008, Physical chemistry chemical physics : PCCP.

[33]  Lai‐Sheng Wang,et al.  Photoelectron Spectroscopy and ab Initio Study of B3- and B4- Anions and Their Neutrals , 2003 .

[34]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[35]  John Edward Lennard-Jones,et al.  The determination of molecular orbitals , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[37]  R. Ponec,et al.  Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons , 2005 .

[38]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[39]  L. Hanley,et al.  Collision-induced dissociation and ab initio studies of boron cluster ions: determination of structures and stabilities , 1988 .

[40]  John C. Slater,et al.  Directed Valence in Polyatomic Molecules , 1931 .

[41]  G. Náray‐Szabó Electrostatic isopotential maps for large biomolecules , 1979 .

[42]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[43]  R. Bader,et al.  Spatial localization of the electronic pair and number distributions in molecules , 1975 .

[44]  Yuchun Lin,et al.  Block-localized wavefunction (BLW) method at the density functional theory (DFT) level. , 2007, The journal of physical chemistry. A.

[45]  Charles W. Bauschlicher,et al.  The structure and stability of Bn+ clusters , 1996 .

[46]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[47]  S. Ruatta,et al.  Interaction of boron cluster ions with water: Single collision dynamics and sequential etching , 1990 .

[48]  C. Coulson,et al.  The Electronic Structure of Some Polyenes and Aromatic Molecules. VII. Bonds of Fractional Order by the Molecular Orbital Method , 1939 .

[49]  István Mayer,et al.  Bond orders and valences from ab initio wave functions , 1986 .

[50]  A. Lapicki,et al.  Interaction of small boron cluster ions with HF , 1997 .

[51]  Patrick W. Fowler,et al.  Patterns of Ring Currents in Conjugated Molecules: A Few-Electron Model Based on Orbital Contributions , 2001 .

[52]  Xavier Fradera,et al.  The Lewis Model and Beyond , 1999 .

[53]  Miquel Solà,et al.  The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization. , 2005, The Journal of chemical physics.

[54]  M. Giambiagi,et al.  MULTICENTER BONDS, BOND VALENCE AND BOND CHARGE APPORTIONMENT , 1997 .

[55]  John C. Slater,et al.  Molecular Energy Levels and Valence Bonds , 1931 .

[56]  A. Alexandrova,et al.  σ-Aromaticity and σ-Antiaromaticity in Alkali Metal and Alkaline Earth Metal Small Clusters , 2003 .

[57]  X. Fradera,et al.  An insight into the local aromaticities of polycyclic aromatic hydrocarbons and fullerenes. , 2003, Chemistry.

[58]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[59]  F. Hund Zur Frage der chemischen Bindung. II , 1932 .

[60]  István Mayer,et al.  Bond order and valence: Relations to Mulliken's population analysis , 1984 .

[61]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[62]  P. Rosmus,et al.  Theoretical Study of the Electronically Excited States of B4, B4+ and B4− , 2005 .

[63]  S. T. Mixon,et al.  Comparison of covalent bond indexes and sharing indexes , 1993 .

[64]  Anastassia N. Alexandrova,et al.  All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry , 2006 .

[65]  X. Chi,et al.  Theoretical study of aromaticity in small hydrogen and metal cation clusters X +3 (X=H, Li, Na, K, and Cu) , 2007 .

[66]  Anastassia N Alexandrova,et al.  Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. , 2003, Angewandte Chemie.

[67]  J. Cioslowski,et al.  Properties of aromaticity indices based on the one-electron density matrix. , 2007, The journal of physical chemistry. A.

[68]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[69]  Patrick Bultinck,et al.  Aromaticity in linear polyacenes: Generalized population analysis and molecular quantum similarity approach , 2007, J. Comput. Chem..

[70]  Mario Giambiagi,et al.  Multicenter bond indices as a measure of aromaticity , 2000 .

[71]  Jun Li,et al.  Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity , 2003, Nature materials.

[72]  J. B. Collins,et al.  Self‐consistent molecular orbital methods. XVII. Geometries and binding energies of second‐row molecules. A comparison of three basis sets , 1976 .

[73]  J. Lennard-jones,et al.  Equivalent orbitals in molecules of known symmetry , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[74]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[75]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. II. THE ONE-ELECTRON BOND AND THE THREE-ELECTRON BOND , 1931 .

[76]  R. Ponec,et al.  Local aromaticity in polycyclic aromatic hydrocarbons: electron delocalization versus magnetic indices. , 2006, Chemistry.

[77]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[78]  D. L. Cooper,et al.  Anatomy of bond formation. Domain-averaged fermi holes as a tool for the study of the nature of the chemical bonding in Li(2), Li(4), and F(2). , 2007, The journal of physical chemistry. A.

[79]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[80]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[81]  F. Weinhold,et al.  Natural population analysis , 1985 .

[82]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES , 1931 .

[83]  Dage Sundholm,et al.  Ab initio determination of the induced ring current in aromatic molecules , 1999 .

[84]  Alexander I Boldyrev,et al.  Comprehensive analysis of chemical bonding in boron clusters , 2007, J. Comput. Chem..

[85]  L. Hanley,et al.  Oxidation of small boron cluster ions (B + 1-13 ) by oxygen , 1988 .

[86]  R. Ponec,et al.  Multicenter bond indices as a new means for the quantitative characterization of homoaromaticity. , 2005, The journal of physical chemistry. A.

[87]  M. Sowa,et al.  Reactions of boron cluster ions (B+n, n=2–24) with N2O: NO versus NN bond activation as a function of size , 1991 .

[88]  Anastassia N Alexandrova,et al.  Photoelectron spectroscopy and ab initio study of the doubly antiaromatic B(6) (2-) dianion in the LiB(6) (-) cluster. , 2005, The Journal of chemical physics.