Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans

The crystal structure at 2.8 Å resolution of the four protein subunits containing cytochrome c oxidase from the soil bacterium Paracoccus denitrificans, complexed with an antibody Fv fragment, is described. Subunit I contains 12 membrane-spanning, primarily helical segments and binds haem a and the haem a3-copper B binuclear centre where molecular oxygen is reduced to water. Two proton transfer pathways, one for protons consumed in water formation and one for 'proton pumping', could be identified. Mechanisms for proton pumping are discussed.

[1]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[2]  P. Rich,et al.  Proton uptake by cytochrome c oxidase on reduction and on ligand binding. , 1994, Biochimica et biophysica acta.

[3]  B. Kadenbach,et al.  Evolution of a regulatory enzyme: cytochrome-c oxidase (complex IV) , 1987 .

[4]  R. Gennis,et al.  Proton transfer in cytochrome bo3 ubiquinol oxidase of Escherichia coli: second-site mutations in subunit I that restore proton pumping in the mutant Asp135-->Asn. , 1995, Biochemistry.

[5]  M. Saraste,et al.  Structural features of cytochrome oxidase , 1990, Quarterly Reviews of Biophysics.

[6]  P. Lappalainen,et al.  Restoration of a lost metal‐binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex. , 1992, The EMBO journal.

[7]  G. Babcock,et al.  Oxygen activation and the conservation of energy in cell respiration , 1992, Nature.

[8]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[9]  R. Gennis,et al.  Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity. , 1993, Biochemistry.

[10]  M. Saraste,et al.  Are there isoenzymes of cytochrome c oxidase in Paracoccus denitrificans? , 1990, FEBS letters.

[11]  H. Bartunik,et al.  Accuracy and precision in protein structure analysis: restrained least-squares refinement of the structure of poplar plastocyanin at 1.33 A resolution. , 1992, Acta crystallographica. Section B, Structural science.

[12]  C. Cooper,et al.  Characterisation of 'fast' and 'slow' forms of bovine heart cytochrome-c oxidase. , 1991, Biochimica et biophysica acta.

[13]  R. Gennis,et al.  Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochromeaa3 and cytochromebo , 1993, Journal of bioenergetics and biomembranes.

[14]  S. Vries,et al.  Metal-metal bonding in biology: EXAFS evidence for a 2.5 A copper-copper bond in the CuA center of cytochrome oxidase. , 1994, Biochemistry.

[15]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[16]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[17]  T. Haltia,et al.  Subunit III of cytochrome c oxidase is not involved in proton translocation: a site‐directed mutagenesis study. , 1991, The EMBO journal.

[18]  R. Gennis,et al.  The cytochrome oxidase superfamily of redox-driven proton pumps. , 1994, Trends in biochemical sciences.

[19]  T. Haltia,et al.  Two cysteines, two histidines, and one methionine are ligands of a binuclear purple copper center. , 1993, The Journal of biological chemistry.

[20]  D. Kastrau,et al.  A comparative EPR investigation of the multicopper proteins nitrous-oxide reductase and cytochrome c oxidase. , 1992, European journal of biochemistry.

[21]  M. Wikström,et al.  The histidine cycle: A new model for proton translocation in the respiratory heme-copper oxidases , 1994, Journal of bioenergetics and biomembranes.

[22]  W. Caughey,et al.  Probing heart cytochromec oxidase structure and function by infrared spectroscopy , 1993, Journal of bioenergetics and biomembranes.

[23]  I. Pascher,et al.  Crystal structures of membrane lipids. , 1992, Biochimica et biophysica acta.

[24]  M. Finel,et al.  Deletion of the gene for subunit III leads to defective assembly of bacterial cytochrome oxidase. , 1989, The EMBO journal.

[25]  K. Pardhasaradhi,et al.  Comparison of energy-transducing capabilities of the two- and three-subunit cytochromes aa3 from Paracoccus denitrificans and the 13-subunit beef heart enzyme. , 1991, Biophysical journal.

[26]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[27]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[28]  B. Ludwig,et al.  A two-subunit cytochrome c oxidase (cytochrome aa3) from Paracoccus dentrificans. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Wikström Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping , 1989, Nature.

[30]  A. Newman,et al.  Evidence that introns arose at proto‐splice sites. , 1989, The EMBO journal.

[31]  A. Puustinen,et al.  Mechanism of proton translocation by the respiratory oxidases. The histidine cycle. , 1994, Biochimica et biophysica acta.

[32]  B. Ludwig,et al.  Purification of Paracoccus denitrificans cytochrome c552 and sequence analysis of the gene. , 1995, European journal of biochemistry.

[33]  H. Bosshard,et al.  Comparison of the binding sites on cytochrome c for cytochrome c oxidase, cytochrome bc1, and cytochrome c1. Differential acetylation of lysyl residues in free and complexed cytochrome c. , 1980, The Journal of biological chemistry.

[34]  Noriyoshi Sakabe,et al.  A Focusing Weissenberg Camera with Multi-Layer-Line Screens for Macromolecular Crystallography , 1983 .

[35]  F. Goñi,et al.  Thermodynamic and structural stability of cytochrome c oxidase from Paracoccus denitrificans. , 1994, Biochemistry.

[36]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[37]  E T Adman,et al.  Copper protein structures. , 1991, Advances in protein chemistry.

[38]  D. Bacon,et al.  A fast algorithm for rendering space-filling molecule pictures , 1988 .

[39]  S. Ferguson-Miller,et al.  Analysis of site-directed mutants locates a non-redox-active metal near the active site of cytochrome c oxidase of Rhodobacter sphaeroides. , 1995, Biochemistry.

[40]  T. Soulimane,et al.  Stoichiometry and redox behaviour of metals in cytochrome-c oxidase. , 1993, European journal of biochemistry.