Modeling for the scale-up of a lithium-ion polymer battery

[1]  H. Gu,et al.  Mathematical Analysis of a Zn / NiOOH Cell , 1983 .

[2]  Y. Morimoto,et al.  Computer Simulation of the Discharge Reaction in Lead‐Acid Batteries , 1988 .

[3]  James W. Evans,et al.  Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application , 1993 .

[4]  John Newman,et al.  Potential and Current Distribution in Electrochemical Cells Interpretation of the Half‐Cell Voltage Measurements as a Function of Reference‐Electrode Location , 1993 .

[5]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[6]  James W. Evans,et al.  Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile , 1994 .

[7]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[8]  Mark W. Verbrugge,et al.  Primary current distribution in a thin-film battery. Application to power-density calculations for lithium batteries , 1995 .

[9]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[10]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[11]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[12]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[13]  James W. Evans,et al.  The Thermal Stability of Lithium Polymer Batteries , 1998 .

[14]  M. Verbrugge,et al.  Temperature and Current Distribution in Thin‐Film Batteries , 1999 .

[15]  James W. Evans,et al.  Electrochemical‐Thermal Model of Lithium Polymer Batteries , 2000 .

[16]  Ralph E. White,et al.  Mathematical modeling of secondary lithium batteries , 2000 .

[17]  Ralph E. White,et al.  Comparison between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries , 2000 .

[18]  Chao-Yang Wang,et al.  Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling , 2002 .

[19]  G. Ceder,et al.  Computational Modeling and Simulation for Rechargeable Batteries , 2002 .

[20]  V. Battaglia,et al.  Electrochemical modeling of lithium polymer batteries , 2002 .

[21]  J. Selman,et al.  Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications , 2002 .

[22]  Ralph E. White,et al.  Mathematical modeling of lithium-ion and nickel battery systems , 2002 .

[23]  Chaoyang Wang,et al.  Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells , 2003 .

[24]  Ralph E. White,et al.  Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery Theory , 2004 .

[25]  Gan Ning,et al.  Cycle Life Modeling of Lithium-Ion Batteries , 2004 .

[26]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[27]  Ralph E. White,et al.  A generalized cycle life model of rechargeable Li-ion batteries , 2006 .

[28]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[29]  Chee Burm Shin,et al.  A two-dimensional modeling of a lithium-polymer battery , 2006 .

[30]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .