Developments in analytical wall shear stress modelling for water hammer phenomena

[1]  P. Fariñas Alvariño,et al.  On the analytic explanation of experiments where turbulence vanishes in pipe flow , 2022, Journal of Fluid Mechanics.

[2]  Ling Zhou,et al.  3D CFD simulation and analysis of transient flow in a water pipeline , 2022, Journal of Water Supply: Research and Technology-Aqua.

[3]  R. Grzejda,et al.  About Inverse Laplace Transform of a Dynamic Viscosity Function , 2022, Materials.

[4]  A. Bergant,et al.  Theoretical and experimental investigations of transient flow in oil-hydraulic small-diameter pipe system , 2021 .

[5]  A. Bergant,et al.  Progress in Analytical Modeling of Water Hammer , 2021, Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics.

[6]  Sławomir Henclik,et al.  Application of the shock response spectrum method to severity assessment of water hammer loads , 2021 .

[7]  F. J. García García,et al.  On the influence of Reynolds shear stress upon the velocity patterns generated in turbulent starting pipe flow , 2020 .

[8]  Pedro J. Lee,et al.  Frequency domain modelling of pipe transient flow with the virtual valves method to reduce linearization errors , 2019, Mechanical Systems and Signal Processing.

[9]  F. J. García García,et al.  On an analytic solution for general unsteady/transient turbulent pipe flow and starting turbulent flow , 2019, European Journal of Mechanics - B/Fluids.

[10]  M. Raisee,et al.  Computation of two- and three-dimensional water hammer flows , 2018, Journal of Hydraulic Research.

[11]  C. Mei,et al.  Effects of thin plaque on blood hammer—An asymptotic theory , 2018 .

[12]  K. Urbanowicz Fast and accurate modelling of frictional transient pipe flow , 2018 .

[13]  Dazhuan Wu,et al.  Three-dimensional computational fluid dynamics simulation of valve-induced water hammer , 2017 .

[14]  C. Mei,et al.  Pressure and wall shear stress in blood hammer - Analytical theory. , 2016, Mathematical biosciences.

[15]  H. Ramos,et al.  CFD modeling of transient flow in pressurized pipes , 2016 .

[16]  Adam Adamkowski,et al.  Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation , 2006 .

[17]  G. Brereton,et al.  Exact solutions for some fully developed laminar pipe flows undergoing arbitrary unsteadiness , 2005 .

[18]  R. J. Sobey Analytical solutions for unsteady pipe flow , 2004 .

[19]  A. Vardy,et al.  Transient turbulent friction in fully rough pipe flows , 2004 .

[20]  Dídia Covas,et al.  Surge damping analysis in pipe systems: modelling and experiments , 2004 .

[21]  A. Vardy,et al.  TRANSIENT TURBULENT FRICTION IN SMOOTH PIPE FLOWS , 2003 .

[22]  J. Vítkovský,et al.  Developments in unsteady pipe flow friction modelling , 2001 .

[23]  G. Brereton The interdependence of friction, pressure gradient, and flow rate in unsteady laminar parallel flows , 2000 .

[24]  G. A. Schohl,et al.  Improved approximate method for simulating frequency-dependent friction in transient laminar flow , 1993 .

[25]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[26]  A. K. Trikha,et al.  An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow , 1975 .

[27]  W. Zielke Frequency dependent friction in transient pipe flow , 1968 .

[28]  F. T. Brown,et al.  The Transient Response of Fluid Lines , 1962 .

[29]  J. M. Jordaan,et al.  Resistance Coefficients for Accelerated and Decelerated Flows Through Smooth Tubes and Orifices , 1956, Journal of Fluids Engineering.

[30]  Joseph Kaye A Table of the First Eleven Repeated Integrals of the Error Function , 1955 .

[31]  S. Pai On turbulent flow in circular pipe , 1953 .

[32]  A. S. Iberall,et al.  Attenuation of Oscillatory Pressures in Instrument Lines , 1950, Journal of Fluids Engineering.

[33]  G. R. Rich Water-Hammer Analysis by the Laplace-Mellin Transformation , 1945, Journal of Fluids Engineering.

[34]  F. M. Wood The Application of Heaviside’s Operational Calculus to the Solution of Problems In Water Hammer , 1937, Journal of Fluids Engineering.

[35]  L. Lu,et al.  Unsteady friction model modified with compression–expansion effects in transient pipe flow , 2022, Journal of Water Supply: Research and Technology-Aqua.

[36]  Sanghyun Kim Time-domain impedance method for transient analysis and leakage detection in reservoir pipeline valve systems , 2022, Mechanical Systems and Signal Processing.

[37]  Ying Zhang,et al.  On the leak-induced transient wave reflection and dominance analysis in water pipelines , 2022, Mechanical Systems and Signal Processing.

[38]  Xun Wang,et al.  Fast computation of inverse transient analysis for pipeline condition assessment via surrogate modeling with sparse sampling strategy , 2022 .

[39]  A. Bergant,et al.  Numerical investigation of the cavitating flow for constant water hammer number , 2021 .

[40]  Pedro J. Lee,et al.  Transient wave-based methods for anomaly detection in fluid pipes: A review , 2021 .

[41]  H. Ramos,et al.  Efficient Computational Fluid Dynamics Model for Transient Laminar Flow Modeling: Pressure Wave Propagation and Velocity Profile Changes , 2018 .

[42]  Mohamed Salah Ghidaoui,et al.  A Review of Water Hammer Theory and Practice , 2005 .

[43]  Tong Zhao,et al.  A STUDY ON BASIC METHODS OF TIME DOMAIN SIMULATION OF FLUID TRANSMISSION LINES , 1989 .

[44]  T. Muto,et al.  Transient Responses of Fluid Lines : Step Responses of Single Pipeline and Series Pipelines , 1985 .

[45]  Lorenzo Allievi,et al.  Teoria generale del moto perturbato dell'acqua nei tubi in pressione (colpo d'ariete) memoria dell'ing. L. B. Allievi , 1903 .

[46]  H. Duan,et al.  Efficient leak detection in single and branched polymeric pipeline systems by transient wave analysis , 2022 .