Processor Architectures for Two-Dimensional Convolvers Using a Single Multiplexed Computational Element with Finite Field Arithmetic

This paper describes the theory, simulation, and construction of a two-dimensional number theoretic transform (NTT) convolver. The convolver performs indirect convolution by using the cyclic convolution property of a class of generalized discrete Fourier transforms (DFT's) defined over rings isomorphic to direct sums of Galois fields. The paper first presents the theoretical development of the computational element required for computing the generalized discrete Fourier transform (GDFIT) and its inverse. The theory extends the use of base fields to second degree extension fields and provides efficient choices for transform parameters to minimize hardware. The paper next presents results of recent work in multidimensional transform memory structures, and extends this work to the complete convolution process. The two theories are then "married" to produce efficient, very high speed convolution architectures. Simulation results are presented for a second degree extension field image convolver and constructional details are presented for a fast image convolver using 2 base fields and designed to operate as a peripheral to a fast 32 bit minicomputer.

[1]  Randy H. Steinvorth,et al.  A video rate two dimensional FFT processor , 1980, ICASSP.

[2]  J. Modestino,et al.  Edge Detection in Noisy Images using Recursive Digital Filtering. , 1977 .

[3]  Anastasios N. Venetsanopoulos,et al.  The Discrete Fourier Transform Over Finite Rings with Application to Fast Convolution , 1978, IEEE Transactions on Computers.

[4]  Peter J. Nicholson,et al.  Algebraic Theory of Finite Fourier Transforms , 1971, Journal of computer and system sciences (Print).

[5]  C. Burrus,et al.  Number theoretic transforms to implement fast digital convolution , 1975 .

[6]  Charles M. Rader,et al.  Discrete Convolutions via Mersenne Transrorms , 1972, IEEE Transactions on Computers.

[7]  H. Nussbaumer Digital filtering using pseudo fermat number transforms , 1977 .

[8]  Richard I. Tanaka,et al.  Residue arithmetic and its applications to computer technology , 1967 .

[9]  Anastasios N. Venetsanopoulos,et al.  Hardware for two-dimensional digital filtering using Fermat number transforms , 1982 .

[10]  Graham A. Jullien,et al.  Residue Number Scaling and Other Operations Using ROM Arrays , 1978, IEEE Transactions on Computers.

[11]  J. Pollard,et al.  The fast Fourier transform in a finite field , 1971 .

[12]  Graham A. Jullien,et al.  Implementation of Multiplication, Modulo a Prime Number, with Applications to Number Theoretic Transforms , 1980, IEEE Transactions on Computers.

[13]  Graham A. Jullien,et al.  Hardware implementation of convolution using number theoretic transforms , 1979, ICASSP.

[14]  Anna Z. Baraniecka DIGITAL FILTERING USING NUMBER-THEORETIC TECHNIQUES. , 1980 .

[15]  T. Bially,et al.  Parallelism in fast Fourier transform hardware , 1973 .

[16]  Michael J. Corinthios A Fast Fourier Transform for High-Speed Signal Processing , 1971, IEEE Transactions on Computers.

[17]  I. Vinogradov,et al.  Elements of number theory , 1954 .

[18]  M. Vanwormhoudt Structural properties of complex residue rings applied to number theoretic Fourier transforms , 1978 .