Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method

The paper provides a general procedure or method to produce asymptotic error expansion for the eigenvalue approximations of second order elliptic problems by the mixed finite element method. We obtain a transform lemma for the error of the eigenvalue approximations. As an application of the transform lemma, the asymptotic error expansion of the eigenvalue approximations for the second order elliptic problem by the lowest order Raviart-Thomas mixed finite element method is given by means of integral identity technique. Based on such an error expansion, Richardson extrapolation technique is applied to improve the accuracy of the eigenvalue approximations.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Qun Lin,et al.  New expansions of numerical eigenvalues for -Δu = λρu by nonconforming elements , 2008, Math. Comput..

[3]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[4]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[5]  Wei Chen,et al.  Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method , 2006 .

[6]  G. Marchuk,et al.  Difference Methods and Their Extrapolations , 1983 .

[7]  Zhangxin Chen Finite Element Methods And Their Applications , 2005 .

[8]  C. Liem,et al.  The Splitting Extrapolation Method: A New Technique in Numerical Solution of Multidimensional Problems , 1995 .

[9]  F. Brezzi,et al.  On the convergence of eigenvalues for mixed formulations , 1997 .

[10]  Francesca Gardini Mixed approximation of eigenvalue problems: A superconvergence result , 2009 .

[11]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[12]  Lin Qun,et al.  Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners , 1990 .

[13]  Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet‐Raviart scheme , 2005 .

[14]  Ferdinando Auricchio,et al.  Mixed Finite Element Methods , 2004 .

[15]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[16]  Shuhua Zhang,et al.  Asymptotic Expansions and Richardson Extrapolation of Approximate Solutions for Second Order Elliptic Problems on Rectangular Domains by Mixed Finite Element Methods , 2006, SIAM J. Numer. Anal..

[17]  I. Babuska,et al.  Estimates for the errors in Eigenvalue and Eigenvector approximation by Galerkinmethods, with particular attention to the case of multiple Eigenvalues , 1987 .

[18]  Ricardo G. Durán,et al.  A POSTERIORI ERROR ESTIMATORS FOR MIXED APPROXIMATIONS OF EIGENVALUE PROBLEMS , 1999 .

[19]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[20]  Jan Brandts,et al.  Superconvergence and a posteriori error estimation in triangular mixed finite elements , 1995 .

[21]  F. Chatelin Spectral approximation of linear operators , 2011 .

[22]  V. V. Shaidurov,et al.  Multigrid Methods for Finite Elements , 1995 .