Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO2-based solid-state solar cells

[1]  S. Haque,et al.  PbS and CdS Quantum Dot‐Sensitized Solid‐State Solar Cells: “Old Concepts, New Results” , 2009 .

[2]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[3]  Jean M. J. Fréchet,et al.  Increased light harvesting in dye-sensitized solar cells with energy relay dyes , 2009 .

[4]  Bin Liu,et al.  Highly Efficient Nanoporous TiO2‐Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal‐Free Organic Dye , 2009 .

[5]  Amy M. Ballantyne,et al.  Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends , 2008 .

[6]  Takhee Lee,et al.  Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells , 2008 .

[7]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[8]  Peidong Yang,et al.  ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells , 2007 .

[9]  Jun-Ho Yum,et al.  Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. , 2007, Angewandte Chemie.

[10]  Mohammad Khaja Nazeeruddin,et al.  Fabrication of screen‐printing pastes from TiO2 powders for dye‐sensitised solar cells , 2007 .

[11]  Henry J. Snaith,et al.  Advances in Liquid‐Electrolyte and Solid‐State Dye‐Sensitized Solar Cells , 2007 .

[12]  H. Ohkita,et al.  Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules , 2007 .

[13]  K. Tennakone,et al.  Solid-state Solar Cells Sensitized with Indoline Dye , 2007 .

[14]  H. Pettersson,et al.  Nanocrystalline dye‐sensitized solar cells having maximum performance , 2007 .

[15]  Michael Grätzel,et al.  TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells , 2006 .

[16]  Jenny Nelson,et al.  Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. , 2006, The journal of physical chemistry. B.

[17]  M. Summers,et al.  Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic–Inorganic Hybrid Photovoltaic Cells , 2005 .

[18]  Frank Lenzmann,et al.  Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells , 2004 .

[19]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[20]  S. Haque,et al.  Transient optical studies of interfacial energetic disorder at nanostructured dye-sensitised inorganic/organic semiconductor heterojunctions. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[22]  David R. Klug,et al.  Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films , 2000 .

[23]  U. Bach,et al.  Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells , 1999 .

[24]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.