(A, B)-invariance conditions of polyhedral domains for continuous-time systems

This paper provides an algebraic characterization of the (A, B)-invariance property of polyhedral sets with respect to linear continuous-time systems. The family of control laws which is investigated is the set of continuous and Lipschitz functions. Some particular conditions of existence of linear state feedback laws are also presented.

[1]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[2]  G. Bitsoris,et al.  Constrained regulation of linear continuous-time dynamical systems , 1989 .

[3]  Jean-Claude Hennet,et al.  A Geometric Approach to the l1 Linear Control Problem , 1997 .

[4]  E. Gilbert,et al.  Computation of minimum-time feedback control laws for discrete-time systems with state-control constraints , 1987 .

[5]  Jean-Claude Hennet,et al.  COMPUTATION OF MAXIMAL ADMISSIBLE SETS OF CONSTRAINED LINEAR SYSTEMS , 1996 .

[6]  S. Tarbouriech,et al.  Positively invariant sets for constrained continuous-time systems with cone properties , 1994, IEEE Trans. Autom. Control..

[7]  J. Shamma Optimization of the l∞-induced norm under full state feedback , 1996, IEEE Trans. Autom. Control..

[8]  Elena De Santis,et al.  On discrete-time linear systems over cones☆ , 1985 .

[9]  M. Sznaier,et al.  Persistent disturbance rejection via static-state feedback , 1995, IEEE Trans. Autom. Control..

[10]  Per-olof Gutman,et al.  Admissible sets and feedback control for discrete-time linear dynamical systems with bounded controls and states , 1984, The 23rd IEEE Conference on Decision and Control.

[11]  J. Hennet,et al.  An Invariance Based Algorithm for the l 1 Optimal Control Problem , 1997 .

[12]  Carlos E. T. Dorea Sur l'(A,B)-invariance de polyèdres convexes ; application à la commande sous contraintes et au problème l1 , 1997 .

[13]  M. Cwikel,et al.  Admissible sets and feedback control for discrete-time linear dynamical systems with bounded controls and states , 1984 .

[14]  J.-C. Hennet,et al.  On (A, B)-invariance of polyhedral domains for discrete-time systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[15]  Jean-Claude Hennet,et al.  (A, B)-invariance conditions of polyhedral domains for continuous-time systems , 1997 .

[16]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[17]  James E. Falk,et al.  Optimization by Vector Space Methods (David G. Luenberger) , 1970 .

[18]  F. Blanchini,et al.  Constrained stabilization of continuous-time linear systems , 1996 .

[19]  Basílio E. A. Milani,et al.  On invariant polyhedra of continuous-time systems subject to additive disturbances , 1996, Autom..

[20]  F. Blanchini Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions , 1994, IEEE Trans. Autom. Control..

[21]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[22]  M. Cwikel,et al.  Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states , 1985, 1985 24th IEEE Conference on Decision and Control.

[23]  G. Seifert,et al.  Positively invariant closed sets for systems of delay differential equations , 1976 .

[24]  J. Hennet,et al.  On invariant polyhedra of continuous-time linear systems , 1993, IEEE Trans. Autom. Control..

[25]  Franco Blanchini,et al.  Nonquadratic Lyapunov functions for robust control , 1995, Autom..