A control chart pattern recognition system using a statistical correlation coefficient method

This paper presents a control chart pattern recognition system using a statistical correlation coefficient method. Pattern recognition techniques have been widely applied to identify unnatural patterns in control charts. Most of them are capable of recognizing a single unnatural pattern for different abnormal types. However, before an unnatural pattern occurs, a change point from normal to abnormal may appear at any point in control charts for most practical cases. Moreover, concurrent patterns where two unnatural patterns simultaneously exist may also occur in a control chart pattem recognition system. Our statistical correlation coefficient approach is a simple mechanism for recognizing these unnatural control chart patterns with good performance. This approach is also an effective method for the control chart pattern recognition without a tedious training process.