Statistical analysis and simulation of design models evolution

Tools, algorithms and methods in the context of Model-Driven Engineering (MDE) have to be assessed, evaluated and tested with regard to different aspects such as correctness, quality, scalability and efficiency. Unfortunately, appropriate test models are scarcely available and those which are accessible often lack desired properties. Therefore, one needs to resort to artificially generated test models in practice. Many services and features of model versioning systems are motivated from the collaborative development paradigm. Testing such services does not require single models, but rather pairs of models, one being derived from the other one by applying a known sequence of edit steps. The edit operations used to modify the models should be the same as in usual development environments, e.g. adding, deleting and changing of model elements in visual model editors. Existing model generators are motivated from the testing of model transformation engines, they do not consider the true nature of evolution in which models are evolved through iterative editing steps. They provide no or very little control over the generation process and they can generate only single models rather than model histories. Moreover, the generation of stochastic and other properties of interest also are not supported in the existing approaches. Furthermore, blindly generating models through random application of edit operations does not yield useful models, since the generated models are not (stochastically) realistic and do not reflect true properties of evolution in real software systems. Unfortunately, little is known about how models of real software systems evolve over time, what are the properties and characteristics of evolution, how one can mathematically formulate the evolution and simulate it. To address the previous problems, we introduce a new general approach which facilitates generating (stochastically) realistic test models for model differencing tools and tools for analyzing model histories. We propose a model generator which addresses the above deficiencies and generates or modifies models by applying proper edit operations. Fine control mechanisms for the generation process are devised and the generator supports stochastic and other properties of interest in the generated models. It also can generate histories, i.e. related sequences, of models. Moreover, in our approach we provide a methodological framework for capturing, mathematically representing and simulating the evolution of real design models. The proposed framework is able to capture the evolution in terms of edit operations applied between revisions. Mathematically, the representation of evolution is based on different statistical distributions as well as different time series models. Forecasting, simulation and generation of stochastically

[1]  J. Davis Univariate Discrete Distributions , 2006 .

[2]  C.J.H. Mann,et al.  Object-Oriented Metrics in Practice: Using Software Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems , 2007 .

[3]  Shane Sendall,et al.  Model Transformation: The Heart and Soul of Model-Driven Software Development , 2003, IEEE Softw..

[4]  Michele Marchesi,et al.  A modified Yule process to model the evolution of some object-oriented system properties , 2011, Inf. Sci..

[5]  Jonathan I. Maletic,et al.  Journal of Software Maintenance and Evolution: Research and Practice Survey a Survey and Taxonomy of Approaches for Mining Software Repositories in the Context of Software Evolution , 2022 .

[6]  Udo Kelter,et al.  Understanding model evolution through semantically lifting model differences with SiLift , 2012, 2012 28th IEEE International Conference on Software Maintenance (ICSM).

[7]  D. Ruppert Statistics and Data Analysis for Financial Engineering , 2010 .

[8]  Wayne Luk,et al.  Gaussian random number generators , 2007, CSUR.

[9]  Tim Schmitz Discrete Event Simulation Modeling Programming And Analysis , 2016 .

[10]  Robert G. Sargent,et al.  Statistical analysis of simulation output data , 1976, SIML.

[11]  Udo Kelter,et al.  A rule-based approach to the semantic lifting of model differences in the context of model versioning , 2011, 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011).

[12]  William W. S. Wei,et al.  Time series analysis - univariate and multivariate methods , 1989 .

[13]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[14]  Ian McLeod Derivation of the Theoretical Autocovariance Function of Autoregressive–Moving Average Time Series , 1975 .

[15]  Michele Marchesi,et al.  Power Laws in Smalltalk , 2004 .

[16]  James R. Wilson,et al.  Evaluation of startup policies in simulation experiments , 1978 .

[17]  Takako Nakatani,et al.  Analysis of software evolution processes using statistical distribution Models , 2002, IWPSE '02.

[18]  Richard Saucier,et al.  Computer Generation of Statistical Distributions , 2000 .

[19]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[20]  Giuliano Antoniol,et al.  Modeling clones evolution through time series , 2001, Proceedings IEEE International Conference on Software Maintenance. ICSM 2001.

[21]  A. I. McLeod,et al.  DIAGNOSTIC CHECKING ARMA TIME SERIES MODELS USING SQUARED‐RESIDUAL AUTOCORRELATIONS , 1983 .

[22]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[23]  Svetlozar T. Rachev,et al.  Financial Econometrics: From Basics to Advanced Modeling Techniques , 2006 .

[24]  Krzysztof Czarnecki,et al.  Classification of Model Transformation Approaches , 2003 .

[25]  Richard F. Paige,et al.  Model comparison: a foundation for model composition and model transformation testing , 2006, GaMMa '06.

[26]  M.M. Lehman,et al.  Programs, life cycles, and laws of software evolution , 1980, Proceedings of the IEEE.

[27]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[28]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[29]  Uzma Raja,et al.  Modeling software evolution defects: a time series approach , 2009 .

[30]  Manuel Wimmer,et al.  A survey on model versioning approaches , 2009, Int. J. Web Inf. Syst..

[31]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[32]  Keith W. Hipel,et al.  Simulation procedures for Box‐Jenkins Models , 1978 .

[33]  Jerry Banks Introduction to simulation , 1999, WSC '99.

[34]  Gabriele Taentzer,et al.  Generating Instance Models from Meta Models , 2006, FMOODS.

[35]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[36]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[37]  Lorenza Saitta,et al.  Long-tailed distributions in grid complex network , 2010, GMAC '10.

[38]  Jordi Cabot Sagrera,et al.  Verification of UML/OCL Class Diagrams Using Constraint Programming , 2008 .

[39]  Udo Kelter,et al.  Consistency-preserving edit scripts in model versioning , 2013, 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE).

[40]  Dieter Jungnickel,et al.  Graphs, Networks, and Algorithms , 1980 .

[41]  Alexis Darrasse,et al.  Uniform Random Generation of Huge Metamodel Instances , 2009, ECMDA-FA.

[42]  Nikolaj Bjørner,et al.  Satisfiability modulo theories , 2011, Commun. ACM.

[43]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[44]  Paul Newbold,et al.  Testing the equality of prediction mean squared errors , 1997 .

[45]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[46]  Luc Devroye,et al.  Random variate generators for the Poisson-Poisson and related distributions , 1989 .

[47]  A. Koehler,et al.  Exponential Smoothing Model Selection for Forecasting , 2006 .

[48]  Israel Herraiz A statistical examination of the evolution and properties of libre software , 2009, 2009 IEEE International Conference on Software Maintenance.

[49]  James R. Cordy,et al.  A Survey of Model Comparison Approaches and Applications , 2013, MODELSWARD.

[50]  Markus Völter,et al.  Model-Driven Software Development: Technology, Engineering, Management , 2006 .

[51]  He Xiao,et al.  Randomized Model Generation for Performance Testing of Model Transformations , 2014, 2014 IEEE 38th Annual Computer Software and Applications Conference.

[52]  Krzysztof Czarnecki,et al.  Feature-based survey of model transformation approaches , 2006, IBM Syst. J..

[53]  Udo Kelter,et al.  Detection of High-Level Changes in Evolving Java Software , 2013, Softwaretechnik-Trends.

[54]  R. Cheng,et al.  The Generation of Gamma Variables with Non‐Integral Shape Parameter , 1977 .

[55]  Paul Embrechts,et al.  A note on generalized inverses , 2013, Math. Methods Oper. Res..

[56]  Jesús M. González-Barahona,et al.  Towards a Theoretical Model for Software Growth , 2007, Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007).

[57]  Udo Kelter,et al.  Controlled Generation of Models with Defined Properties , 2012, Software Engineering.

[58]  Birger Møller-Pedersen,et al.  Synthesizing Software Models: Generating Train Station Models Automatically , 2011, SDL Forum.

[59]  Y. B. Wah,et al.  Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests , 2011 .

[60]  James R. Wilson,et al.  A survey of research on the simulation startup problem , 1978 .

[61]  Steve Counsell,et al.  Power law distributions in class relationships , 2003, Proceedings Third IEEE International Workshop on Source Code Analysis and Manipulation.

[62]  M. Marchesi,et al.  On the suitability of Yule process to stochastically model some properties of object-oriented systems , 2006 .

[63]  Ruey S. Tsay,et al.  An Introduction to Analysis of Financial Data with R , 2012 .

[64]  Udo Kelter,et al.  Statistical Analysis of Changes for Synthesizing Realistic Test Models , 2013, Software Engineering.

[65]  K. Hipel,et al.  Time series modelling of water resources and environmental systems , 1994 .

[66]  Lars Grunske,et al.  An automated approach to forecasting QoS attributes based on linear and non-linear time series modeling , 2012, 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering.

[67]  P. Consul,et al.  A Generalization of the Poisson Distribution , 1973 .

[68]  J. O. Irwin,et al.  The Generalized Waring Distribution. Part III , 1975 .

[69]  Shiqing Ling,et al.  Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models , 2007 .

[70]  James F. Power,et al.  A Metamodel for the Measurement of Object-Oriented Systems: An Analysis using Alloy , 2008, 2008 1st International Conference on Software Testing, Verification, and Validation.

[71]  Kristin Decker,et al.  Uml Distilled A Brief Guide To The Standard Object Modeling Language , 2016 .

[72]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[73]  Samir Khuller,et al.  Graph and network algorithms , 1996, CSUR.

[74]  Marie-Pierre Gervais,et al.  Generation of process using multi-objective genetic algorithm , 2013, ICSSP 2013.

[75]  Ivan Porres,et al.  Model interchange using OMG standards , 2005 .

[76]  Benoit Baudry,et al.  Automatic Model Generation Strategies for Model Transformation Testing , 2009, ICMT@TOOLS.

[77]  Markus Lumpe,et al.  Helix software evolution data set , 2010 .

[78]  Derek G. Corneil,et al.  The graph isomorphism disease , 1977, J. Graph Theory.

[79]  Alexander Lindner,et al.  Stationarity, Mixing, Distributional Properties and Moments of GARCH(p, q)-Processes , 2009 .

[80]  Bran Selic Personal reflections on automation, programming culture, and model-based software engineering , 2008, Automated Software Engineering.

[81]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[82]  Lada A. Adamic,et al.  Zipf's law and the Internet , 2002, Glottometrics.

[83]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[84]  Gerti Kappel,et al.  A posteriori operation detection in evolving software models , 2013, J. Syst. Softw..

[85]  Edwin Lughofer,et al.  Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications , 2011, Studies in Fuzziness and Soft Computing.

[86]  Stephen J. Mellor,et al.  Model-driven development - Guest editor's introduction , 2003 .

[87]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[88]  Voratas Kachitvichyanukul,et al.  Binomial random variate generation , 1988, CACM.

[89]  Udo Kelter,et al.  Adaptability of model comparison tools , 2012, 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering.

[90]  Tom Mens,et al.  A State-of-the-Art Survey on Software Merging , 2002, IEEE Trans. Software Eng..

[91]  Meir M. Lehman,et al.  Laws of Software Evolution Revisited , 1996, EWSPT.

[92]  Gabriele Taentzer,et al.  Henshin: advanced concepts and tools for in-place EMF model transformations , 2010, MODELS'10.

[93]  H. Akaike A new look at the statistical model identification , 1974 .

[94]  Gabriele Taentzer,et al.  Proceedings of the 11th International Workshop on Graph Transformation and Visual Modeling Techniques (gt-vmt 2012) Instance Generation from Type Graphs with Arbitrary Multiplicities Instance Generation from Type Graphs with Arbitrary Multiplicities , 2022 .

[95]  Richard M. Stallman,et al.  Comparing and Merging Files , 2016 .

[96]  Udo Kelter,et al.  Generating realistic test models for model processing tools , 2011, 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011).

[97]  Udo Kelter,et al.  Assessing the Quality of Model Differencing Engines , 2012, Softwaretechnik-Trends.

[98]  Jianhong Wu,et al.  Data clustering - theory, algorithms, and applications , 2007 .

[99]  Eduardo Rossi,et al.  LECTURE NOTES ON GARCH MODELS , 2004 .

[100]  Colin R. Reeves,et al.  Genetic Algorithms: Principles and Perspectives: A Guide to Ga Theory , 2002 .

[101]  Luc Devroye,et al.  Non-Uniform Random Variate Generation , 1986 .

[102]  Daniel M. Germán,et al.  On the prediction of the evolution of libre software projects , 2007, 2007 IEEE International Conference on Software Maintenance.

[103]  Donald J. Bagert,et al.  Software evolution from a time-series perspective , 2002, International Conference on Software Maintenance, 2002. Proceedings..

[104]  Russell C. H. Cheng Generating beta variates with nonintegral shape parameters , 1978, CACM.

[105]  Raed Shatnawi,et al.  An Empirical Study of the Effect of Power Law Distribution on the Interpretation of OO Metrics , 2013 .

[106]  Udo Kelter,et al.  A Generic Difference Algorithm for UML Models , 2005, Software Engineering.

[107]  Jim Steel,et al.  Metamodel-based Test Generation for Model Transformations: an Algorithm and a Tool , 2006, 2006 17th International Symposium on Software Reliability Engineering.

[108]  Anneke Kleppe,et al.  The Object Constraint Language: Getting Your Models Ready for MDA , 2003 .

[109]  Christoph Treude,et al.  Difference computation of large models , 2007, ESEC-FSE '07.

[110]  Oscar Nierstrasz,et al.  The Inevitable Stability of Software Change , 2007, 2007 IEEE International Conference on Software Maintenance.

[111]  W. Enders Applied Econometric Time Series , 1994 .

[112]  Tetsuo Tamai,et al.  Process of software evolution , 2002, First International Symposium on Cyber Worlds, 2002. Proceedings..

[113]  Terry Halpin,et al.  Object-Role Modeling (ORM/NIAM) , 2006, Handbook on Architectures of Information Systems.

[114]  Yves Le Traon,et al.  Model Transformation Testing Challenges , 2006 .

[115]  R. E. Kurt Stirewalt,et al.  Automated Test Input Generation for Software That Consumes ORM Models , 2009, OTM Workshops.

[116]  Averill M. Law,et al.  Statistical analysis of simulation output data: the practical state of the art , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[117]  Alan W. Brown,et al.  Introduction: Models, Modeling, and Model-Driven Architecture (MDA) , 2005, Model-Driven Software Development.

[118]  Tom Mens,et al.  A Taxonomy of Model Transformation , 2006, GRaMoT@GPCE.

[119]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[120]  Udo Kelter,et al.  Tracing Model Elements , 2007, 2007 IEEE International Conference on Software Maintenance.

[121]  Seong-Hee Kim,et al.  A review of advanced methods for simulation output analysis , 1994 .

[122]  Barbara Kitchenham,et al.  What's up with software metrics? - A preliminary mapping study , 2010, J. Syst. Softw..

[123]  Cesare Tinelli,et al.  Satisfiability Modulo Theories , 2021, Handbook of Satisfiability.

[124]  Gerhard Bohm,et al.  Introduction to Statistics and Data Analysis for Physicists , 2017 .

[125]  R. Sakia The Box-Cox transformation technique: a review , 1992 .

[126]  Udo Kelter,et al.  Synthesizing realistic test models , 2014, Computer Science - Research and Development.

[127]  Eleni Stroulia,et al.  UMLDiff: an algorithm for object-oriented design differencing , 2005, ASE.

[128]  Colin Atkinson,et al.  Model-Driven Development: A Metamodeling Foundation , 2003, IEEE Softw..

[129]  Takako Nakatani,et al.  An Empirical Study of Object Evolution Processes , 2002 .

[130]  Janet Chaseling,et al.  Comparing the simulated power of discrete goodness-of-fit tests for small sample sizes , 2007 .

[131]  Stefan Otte,et al.  Version Control Systems , 2009 .

[132]  Daniel J. Rosenkrantz,et al.  A segmentation-based approach for temporal analysis of software version repositories , 2008, J. Softw. Maintenance Res. Pract..

[133]  David Frankel,et al.  Model Driven Architecture: Applying MDA to Enterprise Computing , 2003 .

[134]  Ewan D. Tempero,et al.  Understanding the shape of Java software , 2006, OOPSLA '06.

[135]  David S. Matteson,et al.  Time-Series Models of Dynamic Volatility and Correlation , 2011, IEEE Signal Processing Magazine.

[136]  J. Cordy,et al.  A Survey of Methods and Applications of Model Comparison Technical Report 2011-582 Rev . 3 , 2011 .

[137]  Ngai Hang Chan Time Series: Applications to Finance with R and S-Plus , 2010 .

[138]  B. Yu. Lemeshko,et al.  The power of goodness of fit tests for close alternatives , 2007 .

[139]  Katsuro Inoue,et al.  An Exploration of Power-Law in Use-Relation of Java Software Systems , 2008 .

[140]  Averill M. Law,et al.  How to build valid and credible simulation models , 2008, 2008 Winter Simulation Conference.

[141]  Robert E. Shannon,et al.  Introduction to the art and science of simulation , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[142]  Daniel Jackson,et al.  Alloy: a lightweight object modelling notation , 2002, TSEM.

[143]  Udo Kelter,et al.  Integrating the Specification and Recognition of Changes in Models , 2012, Softwaretechnik-Trends.

[144]  S. E. Ahmed,et al.  Handbook of Statistical Distributions with Applications , 2007, Technometrics.

[145]  Udo Kelter,et al.  Automatic Generation of Consistency-Preserving Edit Operations for MDE Tools , 2014, MoDELS.

[146]  J. Zakoian,et al.  Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes , 2004 .

[147]  Joachim H. Ahrens,et al.  Computer methods for sampling from gamma, beta, poisson and bionomial distributions , 1974, Computing.

[148]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[149]  Udo Kelter,et al.  Comparing state machines , 2008, CVSM '08.

[150]  Ed Seidewitz,et al.  What Models Mean , 2003, IEEE Softw..

[151]  Andrew F. Seila,et al.  Advanced output analysis for simulation , 1992, WSC '92.

[152]  Xavier Gabaix,et al.  Power Laws in Economics and Finance , 2009 .

[153]  Frank Budinsky,et al.  EMF: Eclipse Modeling Framework 2.0 , 2009 .

[154]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[155]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[156]  Paul Bratley,et al.  A guide to simulation , 1983 .

[157]  James Noble,et al.  Scale-free geometry in OO programs , 2005, CACM.

[158]  Gabriel Altmann,et al.  Unified representation of Zipf distributions , 1995 .

[159]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[160]  Steven C. Wheelwright,et al.  Forecasting methods and applications. , 1979 .

[161]  Jeffrey G. Gray,et al.  Model Comparison : A Key Challenge for Transformation Testing and Version Control in Model Driven Software Development , 2004 .

[162]  Udo Kelter,et al.  Analysis and Prediction of Design Model Evolution Using Time Series , 2014, CAiSE Workshops.

[163]  Qing Wang,et al.  Time series analysis for bug number prediction , 2010, The 2nd International Conference on Software Engineering and Data Mining.

[164]  Z. Sun,et al.  Traffic predictability based on ARIMA/GARCH model , 2006, 2006 2nd Conference on Next Generation Internet Design and Engineering, 2006. NGI '06..

[165]  Mauricio A. Saca Refactoring improving the design of existing code , 2017, 2017 IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII).

[166]  Maher Lamari,et al.  Towards an automated test generation for the verification of model transformations , 2007, SAC '07.

[167]  Udo Kelter,et al.  Analyzing model evolution , 2008, 2008 ACM/IEEE 30th International Conference on Software Engineering.

[168]  Gerti Kappel,et al.  An Introduction to Model Versioning , 2012, SFM.

[169]  Rachel Harrison,et al.  On the statistical distribution of object-oriented system properties , 2012, 2012 3rd International Workshop on Emerging Trends in Software Metrics (WETSoM).

[170]  Richard F. Paige,et al.  Different models for model matching: An analysis of approaches to support model differencing , 2009, 2009 ICSE Workshop on Comparison and Versioning of Software Models.

[171]  Gebhard Kirchgässner,et al.  Introduction to Modern Time Series Analysis , 2007 .

[172]  C. J. Ancker,et al.  The problem of the initial transient in digital computer simulation , 1976, WSC '76.

[173]  David A. Carrington,et al.  Automatic Generation of Test Models for Model Transformations , 2008, 19th Australian Conference on Software Engineering (aswec 2008).

[174]  Anneke Kleppe,et al.  MDA explained - the Model Driven Architecture: practice and promise , 2003, Addison Wesley object technology series.

[175]  Lawrence Leemis,et al.  Simulation fundamentals , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[176]  Jesús M. González-Barahona,et al.  The evolution of the laws of software evolution , 2013, ACM Comput. Surv..

[177]  Eelco Visser,et al.  DSL Engineering - Designing, Implementing and Using Domain-Specific Languages , 2013 .

[178]  Murat Kulahci,et al.  Time Series Analysis and Forecasting by Example , 2011 .

[179]  Diomidis Spinellis,et al.  Power laws in software , 2008, TSEM.

[180]  Mehrdad Sabetzadeh,et al.  Matching and Merging of Statecharts Specifications , 2007, 29th International Conference on Software Engineering (ICSE'07).

[181]  Christos Alexopoulos,et al.  Output Data Analysis , 2007 .

[182]  Ladislav Luksan,et al.  Parameter Estimation of ARMA Models with GARCH / APARCH Errors An R and SPlus Software Implementation , 2006 .

[183]  C. J. Ancker,et al.  Evaluation of commonly used rules for detecting “steady state” in computer simulation , 1978 .

[184]  Giuliano Antoniol,et al.  Trend Analysis and Issue Prediction in Large-Scale Open Source Systems , 2008, 2008 12th European Conference on Software Maintenance and Reengineering.

[185]  Rajesh Vasa,et al.  Growth and Change Dynamics in Open Source Software Systems , 2010 .

[186]  S. N. Sivanandam,et al.  Introduction to genetic algorithms , 2007 .

[187]  Michael Stepp,et al.  An empirical study of Java bytecode programs , 2007, Softw. Pract. Exp..

[188]  Shari Lawrence Pfleeger,et al.  Software Metrics : A Rigorous and Practical Approach , 1998 .

[189]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[190]  Matthew McCullough,et al.  Version Control with Git: Powerful Tools and Techniques for Collaborative Software Development , 2009 .

[191]  Michael Pilato Version Control with Subversion , 2004 .

[192]  Udo Kelter,et al.  Generating Edit Operations for Profiled UML Models , 2013, ME@MoDELS.

[193]  Gerti Kappel,et al.  Adaptable Model Versioning in Action , 2010, Modellierung.

[194]  R. Scheaffer,et al.  Mathematical Statistics with Applications. , 1992 .

[195]  M Mernik,et al.  When and how to develop domain-specific languages , 2005, CSUR.

[196]  Douglas C. Schmidt,et al.  Guest Editor's Introduction: Model-Driven Engineering , 2006, Computer.

[197]  Bran Selic,et al.  The Pragmatics of Model-Driven Development , 2003, IEEE Softw..

[198]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[199]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[200]  Lars Grunske,et al.  An Approach to Forecasting QoS Attributes of Web Services Based on ARIMA and GARCH Models , 2012, 2012 IEEE 19th International Conference on Web Services.

[201]  Michele Marchesi,et al.  Power-Laws in a Large Object-Oriented Software System , 2007, IEEE Transactions on Software Engineering.

[202]  J. Zakoian,et al.  GARCH Models: Structure, Statistical Inference and Financial Applications , 2010 .

[203]  J. Armstrong,et al.  Evaluating Forecasting Methods , 2001 .

[204]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[205]  Michel Wermelinger,et al.  Empirical Studies of Open Source Evolution , 2008, Software Evolution.

[206]  David Ameller Considering Non-Functional Requirements in Model-Driven Engineering , 2009 .

[207]  Oscar Nierstrasz,et al.  On the Resilience of Classes to Change , 2008, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[208]  Sven Wenzel Unique identification of elements in evolving models : towards fine-grained traceability in model-driven engineering , 2010 .

[209]  J. Carson Introduction to modeling and simulation , 2005, Proceedings of the Winter Simulation Conference, 2005..

[210]  Celso Leandro Palma,et al.  Handbook of simulation: principles, methodology, advances, applications, and practice , 2016 .

[211]  Alan W. Brown Model driven architecture: Principles and practice , 2004, Software and Systems Modeling.

[212]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[213]  Dewayne E. Perry,et al.  Metrics and laws of software evolution-the nineties view , 1997, Proceedings Fourth International Software Metrics Symposium.

[214]  Daniel Jackson,et al.  Alloy*: A Higher-Order Relational Constraint Solver , 2014 .

[215]  Rob J Hyndman,et al.  Another look at measures of forecast accuracy , 2006 .

[216]  T. Bollerslev,et al.  ON THE CORRELATION STRUCTURE FOR THE GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTIC PROCESS , 1988 .

[217]  Kuldeep Kumar,et al.  Modelling Financial Time Series with S‐PLUS , 2007 .

[218]  Fred L. Collopy,et al.  Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons , 1992 .

[219]  Duc T. Nguyen,et al.  Numerical Methods with Applications , 2011 .

[220]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[221]  David M. Nicol,et al.  Discrete-Event System Simulation, 5th New Internatinal Edition , 2010 .

[222]  G. Altmann,et al.  Thesaurus of univariate discrete probability distributions , 1999 .

[223]  Roberto S. Mariano,et al.  Testing Forecast Accuracy , 2007 .

[224]  Hao Wu,et al.  Metamodel Instance Generation: A systematic literature review , 2012, ArXiv.

[225]  Tom Mens,et al.  Challenges in software evolution , 2005, Eighth International Workshop on Principles of Software Evolution (IWPSE'05).

[226]  Patrice Chalin,et al.  Model Merging Falls Short of Software Engineering Needs , 2008 .

[227]  George Athanasopoulos,et al.  Forecasting: principles and practice , 2013 .

[228]  B. Baudry,et al.  Validation in model-driven engineering: testing model transformations , 2004, Proceedings. 2004 First International Workshop on Model, Design and Validation, 2004..

[229]  Theresa L. Utlaut,et al.  Introduction to Time Series Analysis and Forecasting , 2008 .