On Sparse Optimal Control for General Linear Systems

In this paper, we investigate an <inline-formula><tex-math notation="LaTeX">$L^0$</tex-math></inline-formula> optimization problem with constraints in a form of Volterra integral equation and the <inline-formula><tex-math notation="LaTeX">$L^{\infty }$</tex-math></inline-formula> norm. In particular, the equivalence theorem among the <inline-formula><tex-math notation="LaTeX">$L^p$</tex-math></inline-formula> optimizations with <inline-formula><tex-math notation="LaTeX">$p\in [0, 1]$</tex-math></inline-formula> is derived, which provides the following twofold extension of the existing results: First, these theoretical results enable us to solve sparse optimal control problems without imposing the finite dimensionality of the system to be controlled, which was the crucial assumption for the derivation of the existing results. Second, the relationship between the partial state constrained problem and output controllability is newly characterized.

[1]  Karl Kunisch,et al.  Infinite Horizon Sparse Optimal Control , 2016, J. Optim. Theory Appl..

[2]  Kenji Kashima,et al.  Sparsity-Constrained Controllability Maximization With Application to Time-Varying Control Node Selection , 2018, IEEE Control Systems Letters.

[3]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[4]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[5]  J. Imura,et al.  Distributed parameter modeling and finite-frequency loop-shaping of electromagnetic molding machine , 2013 .

[6]  Daniel E. Quevedo,et al.  Characterization of maximum hands-off control , 2016, Syst. Control. Lett..

[7]  J P Lasalle,et al.  TIME OPTIMAL CONTROL SYSTEMS. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Daniel E. Quevedo,et al.  Maximum Hands-Off Control: A Paradigm of Control Effort Minimization , 2014, IEEE Transactions on Automatic Control.

[9]  W. Grimmell The Existence of Piecewise Continuous Fuel Optimal Controls , 1967 .

[10]  Gerd Wachsmuth,et al.  Convergence and regularization results for optimal control problems with sparsity functional , 2011 .

[11]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[12]  Otomar Hájek On the number of roots of exp-trig polynomials , 2005, Computing.

[13]  Chi-Tsong Chen,et al.  Introduction to linear system theory , 1970 .

[14]  M. Nagahara,et al.  Computation of maximum hands-off control , 2016, 2016 SICE International Symposium on Control Systems (ISCS).

[15]  Massimo Fornasier,et al.  Sparse Stabilization and Control of Alignment Models , 2012, 1210.5739.

[16]  Roland Herzog,et al.  Directional Sparsity in Optimal Control of Partial Differential Equations , 2012, SIAM J. Control. Optim..

[17]  Zhiping Rao A dynamic programming approach for L0 optimal control design , 2017 .

[18]  Karl Kunisch,et al.  Measure Valued Directional Sparsity for Parabolic Optimal Control Problems , 2014, SIAM J. Control. Optim..

[19]  H. Maurer,et al.  On L1‐minimization in optimal control and applications to robotics , 2006 .

[20]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[21]  Masaaki Nagahara,et al.  Maximum hands-off control without normality assumption , 2015, 2016 American Control Conference (ACC).

[22]  Kazufumi Ito,et al.  Optimal Control with Lp(Ω), $p\in [0, 1)$, Control Cost , 2014, SIAM J. Control. Optim..

[23]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..