A hybrid approach to cosmic microwave background lensing reconstruction from all-sky intensity maps

On the basis of realistic simulations, we propose a hybrid method to reconstruct the lensing potential power spectrum, directly on Planck-like cosmic microwave background frequency maps. This involves the use of a large Galactic mask and the treatment of strong inhomogeneous noise. For l ≲ 100, we show that a full-sky inpainting method, which was previously described, still allows a minimal variance reconstruction, with a bias that must be accounted for by a Monte Carlo method but that does not couple to the deflection field. For l ≳ 100, we develop a method based on tiling the cut-sky with local 10° × 10° overlapping tangent planes (referred to in the following as patches). We tackle various issues related to their size/position, non-periodic boundaries, and irregularly sampled data of the planes after the sphere-to-plane projection. We show that the predominant noise term of the quadratic lensing estimator determined from an apodized patch can still be recovered directly from the data. To prevent any loss of spatial accuracy, we developed a tool that allows the efficient determination of the complex Fourier series coefficients from a bi-dimensional irregularly sampled dataset, without performing any interpolation. We show that our multi-patch approach enables the lensing power spectrum to be reconstructed with a very small bias, thanks to the omission of a Galactic mask and smaller noise inhomogeneities, as well as an almost minimal variance. At each stage, the data quality can be assessed and simple bi-dimensional spectra compiled, which allows the control of local systematic errors.

[1]  S. Pires,et al.  Towards a fast, model-independent Cosmic Microwave Background bispectrum estimator , 2011, 1106.1039.

[2]  Edward J. Wollack,et al.  Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope. , 2011, Physical review letters.

[3]  Jean-Luc Starck,et al.  Reconstruction of the cosmic microwave background lensing for Planck , 2010 .

[4]  A. Challinor,et al.  CMB temperature lensing power reconstruction , 2010, 1008.4403.

[5]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[6]  Stefan Kunis,et al.  Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.

[7]  K. Gorski,et al.  Lensing reconstruction from Planck sky maps: inhomogeneous noise , 2009, 0907.1927.

[8]  Wolfgang Bangerth,et al.  Data structures and requirements for hp finite element software , 2009, TOMS.

[9]  D. Spergel,et al.  Efficient power spectrum estimation for high resolution CMB maps , 2008, 0809.1092.

[10]  J. Fadili,et al.  FAst STatistics for weak Lensing (FASTLens): fast method for weak lensing statistics and map making , 2008, 0804.4068.

[11]  J. Fadili,et al.  CMB data analysis and sparsity , 2008, 0804.1295.

[12]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: GALACTIC FOREGROUND EMISSION , 2008, 0803.0715.

[13]  Jean-Luc Starck,et al.  Morphological Component Analysis and Inpainting on the Sphere: Application in Physics and Astrophysics , 2007 .

[14]  Oliver Zahn,et al.  Detection of gravitational lensing in the cosmic microwave background , 2007, 0705.3980.

[15]  R. Metcalf,et al.  High-resolution imaging of the cosmic mass distribution from gravitational lensing of pre-galactic H i , 2006, astro-ph/0611862.

[16]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[17]  Y. Moudden,et al.  Wavelets, ridgelets and curvelets on the sphere , 2005, astro-ph/0509883.

[18]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[19]  A. Lewis,et al.  Lensed CMB power spectra from all-sky correlation functions , 2005, astro-ph/0502425.

[20]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[21]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003, astro-ph/0307515.

[22]  Wayne Hu,et al.  Cosmic microwave background lensing reconstruction on the full sky , 2003 .

[23]  M. Kamionkowski,et al.  Lensing reconstruction with CMB temperature and polarization , 2003, astro-ph/0302536.

[24]  U. Seljak,et al.  Analyzing weak lensing of the cosmic microwave background using the likelihood function , 2002, astro-ph/0209489.

[25]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[26]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2001, astro-ph/0111606.

[27]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[28]  Wayne Hu,et al.  Weak lensing of the CMB: A harmonic approach , 2000, astro-ph/0001303.

[29]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[30]  R. Stompor,et al.  Gravitational lensing of cosmic microwave background anisotropies and cosmological parameter estimation , 1998, astro-ph/9805294.

[31]  J. Carlstrom,et al.  Interferometric Observation of Cosmic Microwave Background Anisotropies , 1997, astro-ph/9712195.

[32]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[33]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[34]  H. Aumann,et al.  Infrared Astronomical Satellite , 1977 .

[35]  R. B. Barreiro,et al.  Planck early results Special feature Planck early results . VII . The Early Release Compact Source Catalogue , 2011 .

[36]  G. W. Pratt,et al.  Planck early results Special feature Planck early results . VIII . The all-sky early Sunyaev-Zeldovich cluster sample , 2011 .

[37]  Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASS RECONSTRUCTION WITH CMB POLARIZATION , 2007 .

[38]  C. Beichman,et al.  Infrared Astronomical Satellite (IRAS) catalogs and atlases , 1988 .

[39]  C. Beichman,et al.  Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement , 1988 .

[40]  C. Beichman,et al.  Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Explanatory Supplement , 1985 .