Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure.

We report experimental evidence that electromagnetic coupling between physically separated planar metal patterns located in parallel planes provides for extremely strong polarization rotatory power if one pattern is twisted with respect to the other, creating a chiral object. In terms of a rotary power per sample thickness equal to one wavelength, the bilayered structure rotates 5 orders of magnitude stronger than a gyrotropic crystal of quartz in the visible spectrum.