Improved Distributed Algorithms for Fundamental Graph Problems

Distributed graph algorithms provide efficient and theoretically sound methods for solving graph problems in distributed settings and more generally for performing distributed computation in networks. These algorithms are applicable in a wide variety of settings, ranging from computer networks to massively parallel computing and beyond. This thesis addresses a number of the central problems of distributed graph algorithms. These problems generally revolve around two of the principal challenges of the area, locality and congestion. The problems include computing maximal independent set, minimum spanning tree, minimum edge cut and minimum vertex cut, graph connectivity decompositions, network information dissemination, minimum-weight connected dominating set, and scheduling distributed protocols. We develop novel techniques, concepts, and tools for these problems, and present algorithms and impossibility results which improve considerably on the state of the art, in several cases resolving or advancing long-standing open problems. Thesis Supervisor: Nancy Lynch Title: NEC Professor of Software Science and Engineering

[1]  Gayathri Mahalingam,et al.  Connected domination in graphs , 2005 .

[2]  Ran Raz,et al.  A parallel repetition theorem , 1995, STOC '95.

[3]  Harold N. Gabow,et al.  Forests, frames, and games: algorithms for matroid sums and applications , 1988, STOC '88.

[4]  Mikkel Thorup,et al.  Fully-dynamic min-cut , 2001, STOC '01.

[5]  Satish Rao,et al.  Computing vertex connectivity: new bounds from old techniques , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[6]  Boaz Patt-Shamir,et al.  Near-Optimal Distributed Maximum Flow , 2015, SIAM J. Comput..

[7]  Thomas Rothvoß A simpler proof for O(congestion + dilation) packet routing , 2012, ArXiv.

[8]  Michael Elkin,et al.  Unconditional lower bounds on the time-approximation tradeoffs for the distributed minimum spanning tree problem , 2004, STOC '04.

[9]  Noga Alon,et al.  Broadcast Throughput in Radio Networks: Routing vs. Network Coding , 2012, SODA.

[10]  Uriel Feige,et al.  Approximating the domatic number , 2000, STOC '00.

[11]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[12]  Arkady Kanevsky,et al.  On the number of minimum size separating vertex sets in a graph and how to find all of them , 1987, SODA '90.

[13]  Marcin Bienkowski,et al.  A practical algorithm for constructing oblivious routing schemes , 2003, SPAA '03.

[14]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[15]  Bernhard Haeupler,et al.  Fast Structuring of Radio Networks for Multi-Message Communications , 2014, ArXiv.

[16]  Bonnie Berger,et al.  Efficient NC Algorithms for Set Cover with Applications to Learning and Geometry , 1994, J. Comput. Syst. Sci..

[17]  Sukhamay Kundu,et al.  Bounds on the number of disjoint spanning trees , 1974 .

[18]  Danupon Nanongkai,et al.  Distributed approximation algorithms for weighted shortest paths , 2014, STOC.

[19]  D. Matula A linear time 2 + ε approximation algorithm for edge connectivity , 1993, SODA 1993.

[20]  Jie Wu,et al.  On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless networks , 2001, Journal of Communications and Networks.

[21]  Majid Khabbazian,et al.  Randomized broadcast in radio networks with collision detection , 2013, PODC '13.

[22]  Bernhard Haeupler,et al.  Distributed Algorithms for Planar Networks I: Planar Embedding , 2016, PODC.

[23]  Noga Alon,et al.  Space-efficient local computation algorithms , 2011, SODA.

[24]  W. T. Tutte On the Problem of Decomposing a Graph into n Connected Factors , 1961 .

[25]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[26]  Calvin C. Newport,et al.  How to Discreetly Spread a Rumor in a Crowd , 2016, DISC.

[27]  Monika Henzinger,et al.  A Static 2-Approximation Algorithm for Vertex Connectivity and Incremental Approximation Algorithms for Edge and Vertex Connectivity , 1997, J. Algorithms.

[28]  Harald Räcke,et al.  Minimizing Congestion in General Networks , 2002, FOCS.

[29]  Douglas F. Rall,et al.  Connected Domatic Number in Planar Graphs , 2001 .

[30]  Bohdan Zelinka,et al.  Connected domatic number of a graph , 1986 .

[31]  Fabian Kuhn,et al.  Distributed connectivity decomposition , 2013, PODC.

[32]  Alessandro Panconesi,et al.  Some simple distributed algorithms for sparse networks , 2001, Distributed Computing.

[33]  Nancy A. Lynch,et al.  Beeping a Maximal Independent Set Fast , 2017, ArXiv.

[34]  Merav Parter,et al.  MST in Log-Star Rounds of Congested Clique , 2016, PODC.

[35]  Zongpeng Li,et al.  A Constant Bound on Throughput Improvement of Multicast Network Coding in Undirected Networks , 2009, IEEE Transactions on Information Theory.

[36]  Christian Scheideler,et al.  Universal Routing Strategies for Interconnection Networks , 1998, Lecture Notes in Computer Science.

[37]  David R. Karger,et al.  Finding maximum flows in undirected graphs seems easier than bipartite matching , 1998, STOC '98.

[38]  Aravind Srinivasan,et al.  Chernoff-Hoeffding bounds for applications with limited independence , 1995, SODA '93.

[39]  Fabian Kuhn,et al.  Distributed Minimum Cut Approximation , 2013, DISC.

[40]  Peng-Jun Wan,et al.  Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[41]  Christoph Lenzen,et al.  Optimal deterministic routing and sorting on the congested clique , 2012, PODC '13.

[42]  Hsin-Hao Su,et al.  Distributed Degree Splitting, Edge Coloring, and Orientations , 2016, SODA.

[43]  Lenore Cowen,et al.  Fast network decomposition , 1992, PODC '92.

[44]  Sriram V. Pemmaraju,et al.  Brief announcement: Super-fast t-ruling sets , 2014, PODC '14.

[45]  Mohsen Ghaffari,et al.  Near-Optimal Scheduling of Distributed Algorithms , 2015, PODC.

[46]  Toniann Pitassi,et al.  The story of set disjointness , 2010, SIGA.

[47]  Xiuzhen Cheng,et al.  Connected Dominating Set in Sensor Networks and MANETs , 2004 .

[48]  David R. Karger,et al.  Random Contractions and Sampling for Hypergraph and Hedge Connectivity , 2017, SODA.

[49]  Mohsen Ghaffari Distributed Broadcast Revisited: Towards Universal Optimality , 2015, ICALP.

[50]  Hartmut Klauck A strong direct product theorem for disjointness , 2010, STOC '10.

[51]  Nancy A. Lynch,et al.  Bounds on Contention Management in Radio Networks , 2012, DISC.

[52]  Shay Kutten,et al.  A sub-linear time distributed algorithm for minimum-weight spanning trees , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[53]  Ramakrishna Thurimella Sub-Linear Distributed Algorithms for Sparse Certificates and Biconnected Components , 1997, J. Algorithms.

[54]  Robert E. Tarjan,et al.  Testing graph connectivity , 1974, STOC '74.

[55]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[56]  Leonid Barenboim,et al.  Distributed Graph Coloring: Fundamentals and Recent Developments , 2013, Distributed Graph Coloring: Fundamentals and Recent Developments.

[57]  Ronitt Rubinfeld,et al.  Local Computation Algorithms for Graphs of Non-constant Degrees , 2016, Algorithmica.

[58]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[59]  Merav Parter,et al.  Near-Optimal Distributed Algorithms for Fault-Tolerant Tree Structures , 2016, SPAA.

[60]  Shafi Goldwasser,et al.  Probabilistic Search Algorithms with Unique Answers and Their Cryptographic Applications , 2011, Electron. Colloquium Comput. Complex..

[61]  Bernhard Haeupler,et al.  Near Optimal Leader Election in Multi-Hop Radio Networks , 2012, SODA.

[62]  Nancy A. Lynch,et al.  Multi-message broadcast with abstract MAC layers and unreliable links , 2014, PODC '14.

[63]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[64]  Boaz Patt-Shamir,et al.  MST construction in O(log log n) communication rounds , 2003, SPAA '03.

[65]  M. Medard,et al.  On the multiple unicast network coding, conjecture , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[66]  Alon Itai,et al.  Three tree-paths , 1989, J. Graph Theory.

[67]  Ian M. Mitchell,et al.  Parallel Computation , 1999, Algorithms and Theory of Computation Handbook.

[68]  Shimon Even,et al.  An Algorithm for Determining Whether the Connectivity of a Graph is at Least k , 1973, SIAM J. Comput..

[69]  Mohsen Ghaffari,et al.  An Improved Distributed Algorithm for Maximal Independent Set , 2015, SODA.

[70]  Bernhard Haeupler,et al.  Distributed Algorithms for Planar Networks II: Low-Congestion Shortcuts, MST, and Min-Cut , 2016, SODA.

[71]  Amit Agarwal,et al.  On the advantage of network coding for improving network throughput , 2004, ITW.

[72]  David R. Karger,et al.  Using randomized sparsification to approximate minimum cuts , 1994, SODA '94.

[73]  Aravind Srinivasan,et al.  Improved distributed algorithms for coloring and network decomposition problems , 1992, STOC '92.

[74]  Peter Elias,et al.  A note on the maximum flow through a network , 1956, IRE Trans. Inf. Theory.

[75]  Jerry Li,et al.  On the Importance of Registers for Computability , 2014, OPODIS.

[76]  Reuven Bar-Yehuda,et al.  A Distributed (2+ε)-Approximation for Vertex Cover in O(logδ/ε log log δ) Rounds , 2016, PODC.

[77]  Nancy A. Lynch,et al.  The cost of radio network broadcast for different models of unreliable links , 2013, PODC '13.

[78]  Samir Khuller,et al.  Improved Methods for Approximating Node Weighted Steiner Trees and Connected Dominating Sets , 1998, Inf. Comput..

[79]  Christoph Lenzen,et al.  Efficient distributed source detection with limited bandwidth , 2013, PODC '13.

[80]  D. Matula A linear time 2 + &&egr;ε approximation algorithm for edge connectivity , 1993, SODA '93.

[81]  Bruce M. Maggs,et al.  Packet routing and job-shop scheduling inO(congestion+dilation) steps , 1994, Comb..

[82]  Madhu Sudan,et al.  Optimal error rates for interactive coding I: adaptivity and other settings , 2013, STOC.

[83]  Calvin C. Newport,et al.  Maximal independent sets in multichannel radio networks , 2013, PODC '13.

[84]  Ted Rubin Nov An Overview of Computational Complexity , 2010 .

[85]  Calvin C. Newport,et al.  Optimal Broadcast in Shared Spectrum Radio Networks , 2012, OPODIS.

[86]  Peng-Jun Wan,et al.  Message-optimal connected dominating sets in mobile ad hoc networks , 2002, MobiHoc '02.

[87]  Nancy A. Lynch,et al.  Leader election using loneliness detection , 2012, Distributed Computing.

[88]  Vaduvur Bharghavan,et al.  Routing in ad-hoc networks using minimum connected dominating sets , 1997, Proceedings of ICC'97 - International Conference on Communications.

[89]  V. Rich Personal communication , 1989, Nature.

[90]  Peter Sanders,et al.  Polynomial time algorithms for network information flow , 2003, SPAA '03.

[91]  Hsin-Hao Su,et al.  Almost-Tight Distributed Minimum Cut Algorithms , 2014, DISC.

[92]  Desh Ranjan,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[93]  Dana Ron,et al.  On Approximating the Minimum Vertex Cover in Sublinear Time and the Connection to Distributed Algorithms , 2007, Electron. Colloquium Comput. Complex..

[94]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[95]  Shafi Goldwasser Pseudo-deterministic Algorithms , 2012, STACS 2012.

[96]  Boaz Patt-Shamir,et al.  Distributed approximate matching , 2007, PODC '07.

[97]  Leonid Barenboim,et al.  The Locality of Distributed Symmetry Breaking , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[98]  Michael Elkin,et al.  Distributed approximation: a survey , 2004, SIGA.

[99]  Ronitt Rubinfeld,et al.  Fast Local Computation Algorithms , 2011, ICS.

[100]  David Gamarnik,et al.  Asymptotically Optimal Algorithms for Job Shop Scheduling and Packet Routing , 1999, J. Algorithms.

[101]  Jaroslav Nesetril,et al.  Otakar Boruvka on minimum spanning tree problem Translation of both the 1926 papers, comments, history , 2001, Discret. Math..

[102]  Roger Wattenhofer,et al.  Local Computation , 2010, J. ACM.

[103]  Lenore Cowen,et al.  Fast Distributed Network Decompositions and Covers , 1996, J. Parallel Distributed Comput..

[104]  Donald M. Topkis,et al.  Concurrent Broadcast for Information Dissemination , 1985, IEEE Transactions on Software Engineering.

[105]  Yuval Rabani,et al.  Approximation algorithms for the 0-extension problem , 2001, SODA '01.

[106]  Reuven Bar-Yehuda,et al.  Distributed Approximation of Maximum Independent Set and Maximum Matching , 2017, PODC.

[107]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[108]  Friedhelm Meyer auf der Heide,et al.  Shortest-Path Routing in Arbitrary Networks , 1999, J. Algorithms.

[109]  Bernhard Haeupler,et al.  Optimal Error Rates for Interactive Coding II: Efficiency and List Decoding , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[110]  David Peleg,et al.  A near-tight lower bound on the time complexity of distributed MST construction , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[111]  Farhad Shahrokhi,et al.  The maximum concurrent flow problem , 1990, JACM.

[112]  Reuven Bar-Yehuda,et al.  A Distributed (2 + ε)-Approximation for Vertex Cover in O(log Δ / ε log log Δ) Rounds , 2017, J. ACM.

[113]  Alon Itai,et al.  The Multi-Tree Approach to Reliability in Distributed Networks , 1988, Inf. Comput..

[114]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[115]  Donald E. Knuth,et al.  Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms , 1996 .

[116]  F. Chung,et al.  The Diameter of Random Sparse Graphs , 2000 .

[117]  Boaz Patt-Shamir,et al.  Improved distributed steiner forest construction , 2014, PODC '14.

[118]  Yair Bartal Graph Decomposition Lemmas and Their Role in Metric Embedding Methods , 2004, ESA.

[119]  George Giakkoupis,et al.  Tight Bounds on Vertex Connectivity Under Vertex Sampling , 2015, SODA.

[120]  Tsvi Kopelowitz,et al.  An Exponential Separation between Randomized and Deterministic Complexity in the LOCAL Model , 2019, SIAM J. Comput..

[121]  Aravind Srinivasan,et al.  Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons , 2003, J. Comput. Syst. Sci..

[122]  Noga Alon,et al.  Algorithmic construction of sets for k-restrictions , 2006, TALG.

[123]  Andreas Wiese Packet routing and scheduling , 2011 .

[124]  Roger Wattenhofer,et al.  Constant-time distributed dominating set approximation , 2003, PODC '03.

[125]  Andrew V. Goldberg,et al.  Network decomposition and locality in distributed computation , 1989, 30th Annual Symposium on Foundations of Computer Science.

[126]  Philip N. Klein,et al.  Faster Approximation Algorithms for the Unit Capacity Concurrent Flow Problem with Applications to Routing and Finding Sparse Cuts , 1994, SIAM J. Comput..

[127]  Harald Räcke,et al.  Optimal hierarchical decompositions for congestion minimization in networks , 2008, STOC.

[128]  Gregory Schwartzman,et al.  Derandomizing local distributed algorithms under bandwidth restrictions , 2016, Distributed Computing.

[129]  R. Rajaraman,et al.  An efficient distributed algorithm for constructing small dominating sets , 2002 .

[130]  Samir Khuller,et al.  Approximation Algorithms for Connected Dominating Sets , 1996, Algorithmica.

[131]  Eric V. Denardo,et al.  Flows in Networks , 2011 .

[132]  Satish Rao,et al.  A polynomial-time tree decomposition to minimize congestion , 2003, SPAA '03.

[133]  Edith Cohen,et al.  Optimal oblivious routing in polynomial time , 2003, STOC '03.

[134]  David R. Karger,et al.  An NC Algorithm for Minimum Cuts , 1997, SIAM J. Comput..

[135]  Mohsen Ghaffari,et al.  Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set , 2014, ICALP.

[136]  Christoph Lenzen,et al.  MIS on trees , 2011, PODC '11.

[137]  Weili Wu,et al.  Improving Construction for Connected Dominating Set with Steiner Tree in Wireless Sensor Networks , 2006, J. Glob. Optim..

[138]  Ilan Newman,et al.  Private vs. Common Random Bits in Communication Complexity , 1991, Inf. Process. Lett..

[139]  Sriram V. Pemmaraju,et al.  Super-Fast 3-Ruling Sets , 2012, FSTTCS.

[140]  Muriel Médard,et al.  XORs in the Air: Practical Wireless Network Coding , 2006, IEEE/ACM Transactions on Networking.

[141]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[142]  József Beck,et al.  An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.

[143]  David R. Karger,et al.  Global min-cuts in RNC, and other ramifications of a simple min-out algorithm , 1993, SODA '93.

[144]  Christina Fragouli,et al.  Network Coding Fundamentals , 2007, Found. Trends Netw..

[145]  Ding-Zhu Du,et al.  Connected Dominating Set , 2008, Encyclopedia of Algorithms.

[146]  Merav Parter,et al.  A Polylogarithmic Gossip Algorithm for Plurality Consensus , 2016, PODC.

[147]  Leonid Barenboim,et al.  Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition , 2008, PODC '08.

[148]  Christoph Lenzen,et al.  Near-Optimal Distributed Tree Embedding , 2014, DISC.

[149]  Pierre A. Humblet,et al.  A Distributed Algorithm for Minimum-Weight Spanning Trees , 1983, TOPL.

[150]  H. Poincaré,et al.  Percolation ? , 1982 .

[151]  Arthur L. Liestman,et al.  Approximating minimum size weakly-connected dominating sets for clustering mobile ad hoc networks , 2002, MobiHoc '02.

[152]  Yair Bartal,et al.  On approximating arbitrary metrices by tree metrics , 1998, STOC '98.

[153]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[154]  Michael L. Fredman,et al.  Trans-dichotomous algorithms for minimum spanning trees and shortest paths , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[155]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[156]  Peng-Jun Wan,et al.  New distributed algorithm for connected dominating set in wireless ad hoc networks , 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences.

[157]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .

[158]  Harold N. Gabow Using expander graphs to find vertex connectivity , 2006, JACM.

[159]  Hsin-Hao Su,et al.  Distributed algorithms for the Lovász local lemma and graph coloring , 2014, Distributed Computing.

[160]  Robert D. Carr,et al.  Randomized metarounding (extended abstract) , 2000, STOC '00.

[161]  R. Ravi,et al.  A nearly best-possible approximation algorithm for node-weighted Steiner trees , 1993, IPCO.

[162]  J. Picard,et al.  Selected Applications of Minimum Cuts in Networks , 1982 .

[163]  S. N. Maheshwari,et al.  Finding Nonseparating Induced Cycles and Independent Spanning Trees in 3-Connected Graphs , 1988, J. Algorithms.

[164]  Boaz Patt-Shamir,et al.  Fast routing table construction using small messages: extended abstract , 2012, STOC '13.

[165]  Fabian Kuhn,et al.  A New Perspective on Vertex Connectivity , 2013, SODA.

[166]  Uriel Feige A threshold of ln n for approximating set cover (preliminary version) , 1996, STOC '96.

[167]  Zvi Galil,et al.  Finding the Vertex Connectivity of Graphs , 1980, SIAM J. Comput..

[168]  Harold N. Gabow A matroid approach to finding edge connectivity and packing arborescences , 1991, STOC '91.

[169]  Rafail Ostrovsky,et al.  Universal O(congestion + dilation + log1+εN) local control packet switching algorithms , 1997, STOC '97.

[170]  Yuval Rabani,et al.  Distributed packet switching in arbitrary networks , 1996, STOC '96.

[171]  Michael Elkin,et al.  A faster distributed protocol for constructing a minimum spanning tree , 2004, SODA '04.

[172]  Roger Wattenhofer,et al.  What cannot be computed locally! , 2004, PODC '04.

[173]  Éva Tardos,et al.  Fast approximation algorithms for fractional packing and covering problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[174]  Ali Vakilian,et al.  Connected Domatic Packings in Node-capacitated Graphs , 2013 .

[175]  Shay Kutten,et al.  Fast distributed construction of k-dominating sets and applications , 1995, PODC '95.

[176]  Jie Wu,et al.  An extended localized algorithm for connected dominating set formation in ad hoc wireless networks , 2004, IEEE Transactions on Parallel and Distributed Systems.

[177]  Bruce M. Maggs,et al.  Fast Algorithms for Finding O(Congestion + Dilation) Packet Routing Schedules , 1999, Comb..

[178]  Mohammad Taghi Hajiaghayi,et al.  Oblivious routing on node-capacitated and directed graphs , 2005, SODA '05.

[179]  Calvin C. Newport,et al.  Leader Election in Unreliable Radio Networks , 2016, ICALP.

[180]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[181]  Roger Wattenhofer,et al.  Optimal distributed all pairs shortest paths and applications , 2012, PODC '12.

[182]  Francisco Barahona,et al.  Packing Spanning Trees , 1995, Math. Oper. Res..

[183]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[184]  David R. Karger,et al.  Minimum cuts in near-linear time , 1998, JACM.

[185]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[186]  Richard M. Karp,et al.  A fast parallel algorithm for the maximal independent set problem , 1984, STOC '84.

[187]  Bernhard Haeupler,et al.  Analyzing Network Coding (Gossip) Made Easy , 2010, J. ACM.

[188]  Nancy A. Lynch,et al.  Distributed House-Hunting in Ant Colonies , 2015, PODC.

[189]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[190]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[191]  Ashish Goel,et al.  Graph Sparsification via Refinement Sampling , 2010, ArXiv.

[192]  Roger Wattenhofer,et al.  Symmetry breaking depending on the chromatic number or the neighborhood growth , 2013, Theor. Comput. Sci..

[193]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[194]  David R. Karger,et al.  Random sampling in cut, flow, and network design problems , 1994, STOC '94.

[195]  Samir Khuller,et al.  On Independent Spanning Trees , 1992, Inf. Process. Lett..

[196]  Sriram V. Pemmaraju,et al.  Equitable colorings extend Chernoff-Hoeffding bounds , 2001, SODA '01.

[197]  Deying Li,et al.  A polynomial‐time approximation scheme for the minimum‐connected dominating set in ad hoc wireless networks , 2003, Networks.

[198]  David R. Karger,et al.  A randomized fully polynomial time approximation scheme for the all terminal network reliability problem , 1995, STOC '95.

[199]  Andreas Wiese,et al.  Universal Packet Routing with Arbitrary Bandwidths and Transit Times , 2011, IPCO.

[200]  F. Galton,et al.  On the Probability of the Extinction of Families , 1875 .

[201]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[202]  Ashish Goel,et al.  On the Network Coding Advantage for Wireless Multicast in Euclidean Space , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[203]  Aaron Windsor A simple proof that finding a maximal independent set in a graph is in NC , 2004, Inf. Process. Lett..