Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law.

Silicon nanoparticles (NPs) have been widely accepted as an alternative material for typical quantum dots and commercial organic dyes in light-emitting and bioimaging applications owing to silicon's intrinsic merits of least toxicity, low cost, and high abundance. However, to date, how to improve Si nanoparticle photoluminescence (PL) performance (such as ultrahigh quantum yield, sharp emission peak, high stability) is still a major issue. Herein, we report surface nitrogen-capped Si NPs with PL quantum yield up to 90% and narrow PL bandwidth (full width at half-maximum (fwhm) ≈ 40 nm), which can compete with commercial dyes and typical quantum dots. Comprehensive studies have been conducted to unveil the influence of particle size, structure, and amount of surface ligand on the PL of Si NPs. Especially, a general ligand-structure-based PL energy law for surface nitrogen-capped Si NPs is identified in both experimental and theoretical analyses, and the underlying PL mechanisms are further discussed.

[1]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[2]  G. Ozin,et al.  Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. , 2012, Nano letters.

[3]  M. Dasog,et al.  Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals. , 2015, Physical chemistry chemical physics : PCCP.

[4]  Lindsay E. Pell,et al.  Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots , 2002, Science.

[5]  Lorenzo Pavesi,et al.  Optical gain in silicon nanocrystals , 2001 .

[6]  Bernhard Rieger,et al.  Silicon Nanocrystals and Silicon-Polymer Hybrids: Synthesis, Surface Engineering, and Applications. , 2016, Angewandte Chemie.

[7]  Moungi G. Bawendi,et al.  On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots , 2002 .

[8]  Susan M. Kauzlarich,et al.  Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. , 2013, ACS nano.

[9]  Mark T Swihart,et al.  Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[10]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[11]  Lei Wang,et al.  Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence , 2015, Light: Science & Applications.

[12]  U. Kortshagen,et al.  An all-gas-phase approach for the fabrication of silicon nanocrystal light-emitting devices. , 2012, Nano letters.

[13]  C. Hessel,et al.  Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si−SiO2 Composites and Freestanding Hydride-Surface-Terminated Silicon Nanoparticles , 2006 .

[14]  Stephen B. Howell,et al.  In Vivo Time-gated Fluorescence Imaging with Biodegradable Luminescent Porous Silicon Nanoparticles , 2013, Nature Communications.

[15]  Alexander N. Cartwright,et al.  A Solution‐Processed UV‐Sensitive Photodiode Produced Using a New Silicon Nanocrystal Ink , 2014 .

[16]  J. Linnros,et al.  Ultranarrow Luminescence Linewidth of Silicon Nanocrystals and Influence of Matrix , 2014 .

[17]  Uwe R. Kortshagen,et al.  Silicon nanocrystals with ensemble quantum yields exceeding 60 , 2006 .

[18]  Jian Chang,et al.  Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. , 2013, Journal of the American Chemical Society.

[19]  George C Schatz,et al.  On the origin of photoluminescence in silicon nanocrystals: pressure-dependent structural and optical studies. , 2012, Nano letters.

[20]  I. Balberg,et al.  Doping and quantum confinement effects in single Si nanocrystals observed by scanning tunneling spectroscopy. , 2013, Nano letters.

[21]  Mark T. Swihart,et al.  Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum , 2003 .

[22]  S. Kauzlarich,et al.  Colloidal synthesis of an exotic phase of silicon: the BC8 structure. , 2014, Journal of the American Chemical Society.

[23]  A. Meldrum,et al.  Radical Initiated Hydrosilylation on Silicon Nanocrystal Surfaces: An Evaluation of Functional Group Tolerance and Mechanistic Study. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[24]  J. Zhang,et al.  Conversion from Red to Blue Photoluminescence in Alcohol Dispersions of Alkyl-Capped Silicon Nanoparticles: Insight into the Origins of Visible Photoluminescence in Colloidal Nanocrystalline Silicon , 2015 .

[25]  Siyi Wang,et al.  Facile, Large-Quantity Synthesis of Stable, Tunable-Color Silicon Nanoparticles and Their Application for Long-Term Cellular Imaging. , 2015, ACS nano.

[26]  Chunhai Fan,et al.  Silicon nanostructures for bioapplications , 2010 .

[27]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[28]  Deren Yang,et al.  Surface modification of chlorine-passivated silicon nanocrystals. , 2013, Physical chemistry chemical physics : PCCP.

[29]  M. Montalti,et al.  Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. , 2015, Chemical Society reviews.

[30]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[31]  Yuanyuan Su,et al.  Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. , 2012, Angewandte Chemie.

[32]  M. Dasog,et al.  Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. , 2014, ACS nano.

[33]  Xiaoyuan Ji,et al.  Biomimetic Preparation and Dual-Color Bioimaging of Fluorescent Silicon Nanoparticles. , 2015, Journal of the American Chemical Society.

[34]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[35]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[36]  Benjamin F. P. McVey,et al.  Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. , 2014, Accounts of chemical research.

[37]  Uli Lemmer,et al.  Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. , 2011, Journal of the American Chemical Society.

[38]  F. Koch,et al.  Optical absorption cross sections of Si nanocrystals , 2000 .

[39]  M. Iqbal,et al.  Borane-catalyzed room-temperature hydrosilylation of alkenes/alkynes on silicon nanocrystal surfaces. , 2014, Journal of the American Chemical Society.

[40]  D. M. Kroll,et al.  Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals. , 2012, ACS nano.

[41]  Philippe M. Fauchet,et al.  Ordering and self-organization in nanocrystalline silicon , 2000, Nature.

[42]  I. Pelant,et al.  Ultrafast photoluminescence in silicon nanocrystals studied by femtosecond up-conversion technique , 2006 .

[43]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.

[44]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[45]  Cherie R. Kagan,et al.  Prospects of nanoscience with nanocrystals. , 2015, ACS nano.

[46]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[47]  Junwei Wei,et al.  Synthesis of Ligand-Stabilized Silicon Nanocrystals with Size-Dependent Photoluminescence Spanning Visible to Near-Infrared Wavelengths , 2012 .

[48]  C. Fan,et al.  Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. , 2014, Accounts of chemical research.

[49]  J Justin Gooding,et al.  Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. , 2014, Chemical Society reviews.

[50]  V. I. Belyĭ Silicon nitride in electronics , 1988 .

[51]  T. Krauss,et al.  Silicon nanostructures for photonics and photovoltaics. , 2014, Nature nanotechnology.