Portable NIR Spectroscopy-Chemometric Identification of Chemically Differentiated Yerba Mate (Ilex paraguariensis) Clones

[1]  R. Brereton Chemometrics , 2018, Chemometrics and Cheminformatics in Aquatic Toxicology.

[2]  C. Helm,et al.  Effects of different drying methods on the chemical, nutritional and colour of yerba mate (Ilex paraguariensis) leaves , 2021, International Journal of Food Engineering.

[3]  I. S. Scarminio,et al.  Ecometabolic mixture design-fingerprints from exploratory multi-block data analysis in Coffea arabica beans from climate changes: Elevated carbon dioxide and reduced soil water availability. , 2021, Food chemistry.

[4]  I. S. Scarminio,et al.  Time dependent berry maturation for planting density levels in Coffea arabica L. beans: Mixture design-fingerprinting using near-infrared transmittance spectroscopy , 2021 .

[5]  Marcos Silveira Wrege,et al.  Natural distribution of yerba mate in Brazil in the current and future climatic scenarios , 2020, Agrometeoros.

[6]  I. S. Scarminio,et al.  FT-IR biomarkers of sexual dimorphism in yerba-mate plants: Seasonal and light accessibility effects , 2020 .

[7]  W. Willett,et al.  Coffee, Caffeine, and Health. , 2020, The New England journal of medicine.

[8]  M. Beyrouthy,et al.  Yerba Mate (Ilex paraguariensis) a potential food antibacterial agent and combination assays with different classes of antibiotics , 2020 .

[9]  D. Chicco,et al.  The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation , 2020, BMC Genomics.

[10]  I. S. Scarminio,et al.  Irrigated and CO2 level effects on metabolism in Coffea arabica beans from mixture design – near infrared fingerprints , 2020 .

[11]  I. S. Scarminio,et al.  Potential biomonitoring of atmospheric carbon dioxide in Coffea arabica leaves using near-infrared spectroscopy and partial least squares discriminant analysis , 2019, Environmental Science and Pollution Research.

[12]  Karen M. Nunes,et al.  Raman spectroscopy and discriminant analysis applied to the detection of frauds in bovine meat by the addition of salts and carrageenan , 2019, Microchemical Journal.

[13]  C. Long,et al.  LC-MS Metabolomics and Chemotaxonomy of Caffeine-Containing Holly ( Ilex) Species and Related Taxa in the Aquifoliaceae. , 2019, Journal of agricultural and food chemistry.

[14]  M. Eckerstorfer,et al.  Plants Developed by New Genetic Modification Techniques—Comparison of Existing Regulatory Frameworks in the EU and Non-EU Countries , 2019, Front. Bioeng. Biotechnol..

[15]  I. Wendling,et al.  Descritores mínimos em cultivares de espécies florestais: uma contribuição para erva-mate. , 2019 .

[16]  P. S. Marcellini,et al.  Effect of light intensity and processing conditions on bioactive compounds in maté extracted from yerba mate (Ilex paraguariensis A. St.-Hil.). , 2018, Food chemistry.

[17]  Eraldo Antonio Bonfatti Júnior,et al.  MAPEAMENTO DO PROCESSO PRODUTIVO DE ERVA-MATE , 2018, Revista Internacional de Ciências.

[18]  R. Brereton Chemometrics: Data Driven Extraction for Science , 2018 .

[19]  M. D. V. Resende,et al.  Seleção precoce e classificação de progênies de erva-mate , 2018 .

[20]  M. Rakocevic,et al.  Berry distributions on coffee trees cultivated under high densities modulate the chemical composition of respective coffee beans during one biannual cycle , 2018 .

[21]  C. E. Martins,et al.  INFLUÊNCIA DA LUMINOSIDADE E FERTILIZANTES NOS TEORES DE METILXANTINAS E COMPOSTOS FENÓLICOS EM FOLHAS DE ERVA-MATE , 2017 .

[22]  I. Wendling,et al.  Genetic parameters estimates and visual selection for leaves production in Ilex paraguariensis , 2017 .

[23]  Jacques Duílio Brancher,et al.  Modeling the 3D structure and rhythmic growth responses to environment in dioecious yerba-mate , 2014 .

[24]  Patricio Peralta-Zamora,et al.  Application of multivariate calibration and NIR spectroscopy for the quantification of methylxanthines in yerba mate (Ilex paraguariensis) , 2014 .

[25]  P. A. Manfron,et al.  Eficiência do uso da radiação solar por plantas Ilex paraguariensis A. St. Hil. cultivadas sob sombreamento e a pleno sol , 2014 .

[26]  M. Zohra,et al.  Hemolytic activity of different herbal extracts used in Algeria , 2014 .

[27]  Sung Jin Kim,et al.  Antioxidant and antimicrobial activities of various leafy herbal teas , 2013 .

[28]  E. Costes,et al.  Structural and physiological sexual dimorphism estimated from three-dimensional virtual trees of yerba-mate (Ilex paraguariensis) is modified by cultivation environment , 2011 .

[29]  Miroslava Rakocevic,et al.  Time series in analysis of yerba-mate biennial growth modified by environment , 2011, International journal of biometeorology.

[30]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[31]  L. F. Dutra,et al.  Produção e sobrevivência de miniestacas e minicepas de erva-mate cultivadas em sistema semi-hidropônico , 2007 .

[32]  S. Gummadi,et al.  Microbial and enzymatic methods for the removal of caffeine , 2005 .

[33]  C. Pasquini Near Infrared Spectroscopy: fundamentals, practical aspects and analytical applications , 2003 .

[34]  M. D. Saldaña,et al.  Supercritical carbon dioxide extraction of methylxanthines from maté tea leaves , 2000 .

[35]  M. D. V. Resende,et al.  Programa de melhoramento da erva-mate coordenado pela Embrapa: resultados da avaliação genética de populações, progênies, indivíduos e clones , 2000 .

[36]  E. Schenkel,et al.  Saponins from Ilex dumosa, an Erva-maté (Ilex paraguariensis) Adulterating Plant , 1997 .

[37]  William J. Welch,et al.  Computer-aided design of experiments , 1981 .