Portable NIR Spectroscopy-Chemometric Identification of Chemically Differentiated Yerba Mate (Ilex paraguariensis) Clones
暂无分享,去创建一个
I. S. Scarminio | R. Bruns | M. Rakocevic | G. G. Marcheafave | E. D. Pauli | C. D. Tormena | A. G. de Almeida | I. Wendling | I. Scarminio | E. Pauli | G. Marcheafave
[1] R. Brereton. Chemometrics , 2018, Chemometrics and Cheminformatics in Aquatic Toxicology.
[2] C. Helm,et al. Effects of different drying methods on the chemical, nutritional and colour of yerba mate (Ilex paraguariensis) leaves , 2021, International Journal of Food Engineering.
[3] I. S. Scarminio,et al. Ecometabolic mixture design-fingerprints from exploratory multi-block data analysis in Coffea arabica beans from climate changes: Elevated carbon dioxide and reduced soil water availability. , 2021, Food chemistry.
[4] I. S. Scarminio,et al. Time dependent berry maturation for planting density levels in Coffea arabica L. beans: Mixture design-fingerprinting using near-infrared transmittance spectroscopy , 2021 .
[5] Marcos Silveira Wrege,et al. Natural distribution of yerba mate in Brazil in the current and future climatic scenarios , 2020, Agrometeoros.
[6] I. S. Scarminio,et al. FT-IR biomarkers of sexual dimorphism in yerba-mate plants: Seasonal and light accessibility effects , 2020 .
[7] W. Willett,et al. Coffee, Caffeine, and Health. , 2020, The New England journal of medicine.
[8] M. Beyrouthy,et al. Yerba Mate (Ilex paraguariensis) a potential food antibacterial agent and combination assays with different classes of antibiotics , 2020 .
[9] D. Chicco,et al. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation , 2020, BMC Genomics.
[10] I. S. Scarminio,et al. Irrigated and CO2 level effects on metabolism in Coffea arabica beans from mixture design – near infrared fingerprints , 2020 .
[11] I. S. Scarminio,et al. Potential biomonitoring of atmospheric carbon dioxide in Coffea arabica leaves using near-infrared spectroscopy and partial least squares discriminant analysis , 2019, Environmental Science and Pollution Research.
[12] Karen M. Nunes,et al. Raman spectroscopy and discriminant analysis applied to the detection of frauds in bovine meat by the addition of salts and carrageenan , 2019, Microchemical Journal.
[13] C. Long,et al. LC-MS Metabolomics and Chemotaxonomy of Caffeine-Containing Holly ( Ilex) Species and Related Taxa in the Aquifoliaceae. , 2019, Journal of agricultural and food chemistry.
[14] M. Eckerstorfer,et al. Plants Developed by New Genetic Modification Techniques—Comparison of Existing Regulatory Frameworks in the EU and Non-EU Countries , 2019, Front. Bioeng. Biotechnol..
[15] I. Wendling,et al. Descritores mínimos em cultivares de espécies florestais: uma contribuição para erva-mate. , 2019 .
[16] P. S. Marcellini,et al. Effect of light intensity and processing conditions on bioactive compounds in maté extracted from yerba mate (Ilex paraguariensis A. St.-Hil.). , 2018, Food chemistry.
[17] Eraldo Antonio Bonfatti Júnior,et al. MAPEAMENTO DO PROCESSO PRODUTIVO DE ERVA-MATE , 2018, Revista Internacional de Ciências.
[18] R. Brereton. Chemometrics: Data Driven Extraction for Science , 2018 .
[19] M. D. V. Resende,et al. Seleção precoce e classificação de progênies de erva-mate , 2018 .
[20] M. Rakocevic,et al. Berry distributions on coffee trees cultivated under high densities modulate the chemical composition of respective coffee beans during one biannual cycle , 2018 .
[21] C. E. Martins,et al. INFLUÊNCIA DA LUMINOSIDADE E FERTILIZANTES NOS TEORES DE METILXANTINAS E COMPOSTOS FENÓLICOS EM FOLHAS DE ERVA-MATE , 2017 .
[22] I. Wendling,et al. Genetic parameters estimates and visual selection for leaves production in Ilex paraguariensis , 2017 .
[23] Jacques Duílio Brancher,et al. Modeling the 3D structure and rhythmic growth responses to environment in dioecious yerba-mate , 2014 .
[24] Patricio Peralta-Zamora,et al. Application of multivariate calibration and NIR spectroscopy for the quantification of methylxanthines in yerba mate (Ilex paraguariensis) , 2014 .
[25] P. A. Manfron,et al. Eficiência do uso da radiação solar por plantas Ilex paraguariensis A. St. Hil. cultivadas sob sombreamento e a pleno sol , 2014 .
[26] M. Zohra,et al. Hemolytic activity of different herbal extracts used in Algeria , 2014 .
[27] Sung Jin Kim,et al. Antioxidant and antimicrobial activities of various leafy herbal teas , 2013 .
[28] E. Costes,et al. Structural and physiological sexual dimorphism estimated from three-dimensional virtual trees of yerba-mate (Ilex paraguariensis) is modified by cultivation environment , 2011 .
[29] Miroslava Rakocevic,et al. Time series in analysis of yerba-mate biennial growth modified by environment , 2011, International journal of biometeorology.
[30] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[31] L. F. Dutra,et al. Produção e sobrevivência de miniestacas e minicepas de erva-mate cultivadas em sistema semi-hidropônico , 2007 .
[32] S. Gummadi,et al. Microbial and enzymatic methods for the removal of caffeine , 2005 .
[33] C. Pasquini. Near Infrared Spectroscopy: fundamentals, practical aspects and analytical applications , 2003 .
[34] M. D. Saldaña,et al. Supercritical carbon dioxide extraction of methylxanthines from maté tea leaves , 2000 .
[35] M. D. V. Resende,et al. Programa de melhoramento da erva-mate coordenado pela Embrapa: resultados da avaliação genética de populações, progênies, indivíduos e clones , 2000 .
[36] E. Schenkel,et al. Saponins from Ilex dumosa, an Erva-maté (Ilex paraguariensis) Adulterating Plant , 1997 .
[37] William J. Welch,et al. Computer-aided design of experiments , 1981 .