Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems

We derive a posteriori error estimates for fully discrete approximations to solutions of linear parabolic equations. The space discretization uses finite element spaces that are allowed to change in time. Our main tool is an appropriate adaptation of the elliptic reconstruction technique, introduced by Makridakis and Nochetto. We derive novel a posteriori estimates for the norms of L∞(0, T; L2(Ω)) and the higher order spaces, L∞(0, T;H1(Ω)) and H1(0, T; L2(Ω)), with optimal orders of convergence.

[1]  Ivo Babuška,et al.  A POSTERIORI ERROR ESTIMATION FOR THE FINITE ELEMENT METHOD-OF-LINES SOLUTION OF PARABOLIC PROBLEMS , 1999 .

[2]  Ricardo H. Nochetto,et al.  A Posteriori Error Analysis for the Mean Curvature Flow of Graphs , 2005, SIAM J. Numer. Anal..

[3]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[4]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[5]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .

[6]  Rüdiger Verfürth A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[7]  Kunibert G. Siebert,et al.  ALBERT---Software for scientific computations and applications. , 2001 .

[8]  Ricardo H. Nochetto,et al.  A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.

[9]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[10]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems , 1994 .

[11]  Ivo Babuška,et al.  A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations , 2001 .

[12]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[13]  T. Dupont Mesh modification for evolution equations , 1982 .

[14]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[15]  Giuseppe Savare',et al.  A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .

[16]  Christine Bernardi,et al.  A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..

[17]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[18]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[19]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[20]  Ricardo H. Nochetto,et al.  Local a posteriori error estimates and adaptive control of pollution effects , 2003 .

[21]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[22]  Ricardo H. Nochetto,et al.  A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..

[23]  Bosco Garc,et al.  Postprocessing the Galerkin Method: The Finite-Element Case , 1999 .

[24]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[25]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[26]  Giuseppe Savare',et al.  A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .

[27]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[28]  Ricardo H. Nochetto,et al.  A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..

[29]  Willy Dörfler,et al.  An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..

[30]  Miloslav Feistauer,et al.  On one approach to a posteriori error estimates for evolution problems solved by the method of lines , 2001, Numerische Mathematik.

[31]  Edriss S. Titi,et al.  Postprocessing the Galerkin Method: The Finite-Element Case , 1999, SIAM J. Numer. Anal..

[32]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[33]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[34]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[35]  Javier de Frutos,et al.  A posteriori error estimation with the p-version of the finite element method for nonlinear parabolic differential equations☆ , 2002 .

[36]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .