Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems
暂无分享,去创建一个
[1] Ivo Babuška,et al. A POSTERIORI ERROR ESTIMATION FOR THE FINITE ELEMENT METHOD-OF-LINES SOLUTION OF PARABOLIC PROBLEMS , 1999 .
[2] Ricardo H. Nochetto,et al. A Posteriori Error Analysis for the Mean Curvature Flow of Graphs , 2005, SIAM J. Numer. Anal..
[3] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[4] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[5] Rolf Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .
[6] Rüdiger Verfürth. A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..
[7] Kunibert G. Siebert,et al. ALBERT---Software for scientific computations and applications. , 2001 .
[8] Ricardo H. Nochetto,et al. A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.
[9] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[10] Rüdiger Verfürth,et al. A posteriori error estimates for nonlinear problems , 1994 .
[11] Ivo Babuška,et al. A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations , 2001 .
[12] Ricardo H. Nochetto,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[13] T. Dupont. Mesh modification for evolution equations , 1982 .
[14] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .
[15] Giuseppe Savare',et al. A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .
[16] Christine Bernardi,et al. A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..
[17] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[18] M. Picasso. Adaptive finite elements for a linear parabolic problem , 1998 .
[19] Jia Feng,et al. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..
[20] Ricardo H. Nochetto,et al. Local a posteriori error estimates and adaptive control of pollution effects , 2003 .
[21] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[22] Ricardo H. Nochetto,et al. A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..
[23] Bosco Garc,et al. Postprocessing the Galerkin Method: The Finite-Element Case , 1999 .
[24] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[25] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[26] Giuseppe Savare',et al. A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .
[27] Rolf Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .
[28] Ricardo H. Nochetto,et al. A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..
[29] Willy Dörfler,et al. An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..
[30] Miloslav Feistauer,et al. On one approach to a posteriori error estimates for evolution problems solved by the method of lines , 2001, Numerische Mathematik.
[31] Edriss S. Titi,et al. Postprocessing the Galerkin Method: The Finite-Element Case , 1999, SIAM J. Numer. Anal..
[32] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[33] Rüdiger Verfürth,et al. A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..
[34] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[35] Javier de Frutos,et al. A posteriori error estimation with the p-version of the finite element method for nonlinear parabolic differential equations☆ , 2002 .
[36] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .