Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures

The detection of chemicals such as industrial gases and chemical warfare agents is important to human health and safety. Thus, the development of chemical sensors with high sensitivity, high selectivity, and rapid detection is essential and could impact human beings in significant ways. 1-D metal oxide nanostructures with unique geometric and physical properties have been demonstrated to be important candidates as building blocks for chemical sensing applications. Chemical sensors composed of a wide range of pristine 1-D metal oxide nanostructures, such as In2O3, SnO2, ZnO, TiO2, and CuO, have been fabricated, and exhibited very good sensitivity in the detection of important industrial gases, chemical warfare agents, and human breath. In this review, we provide an overview of this chemical sensing field. Various key elements of the topics will be reviewed, including 1-D metal oxide nanostructure synthesis, electronic properties of nanowire-based FETs, and their chemical sensing behaviors. In addition, this paper provides a review of the recent development of electronic nose systems based on metal oxide nanowires, which indicate great potential for the improvement of sensing selectivity.

[1]  Joachim Goschnick,et al.  A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements. , 2007, Nano letters.

[2]  Daihua Zhang,et al.  In2O3 nanowires as chemical sensors , 2003 .

[3]  J. Goschnick,et al.  Reception tuning of gas-sensor microsystems by selective coatings , 1995 .

[4]  Jun Liu,et al.  Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. , 2007, Nature nanotechnology.

[5]  Mahendra K. Sunkara,et al.  Inorganic Nanowires , 2009 .

[6]  Y. Chen,et al.  Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires. Appl Phys Lett 88:201907 , 2006 .

[7]  C. Zhou,et al.  Tuning electronic properties of In2O3 nanowires by doping control , 2004 .

[8]  Jinsoo Park,et al.  Synthesis and high gas sensitivity of tin oxide nanotubes , 2008 .

[9]  Dawei Liu,et al.  Template-based synthesis of nanorod, nanowire, and nanotube arrays. , 2008, Advances in colloid and interface science.

[10]  P. Yang,et al.  Ag nanowire formation within mesoporous silica , 2000 .

[11]  Rajeshuni Ramesham,et al.  Electronic nose for space program applications. , 2003, Sensors and actuators. B, Chemical.

[12]  Zhiyong Fan,et al.  Gate-refreshable nanowire chemical sensors , 2005 .

[13]  G. Sberveglieri,et al.  Controlled Growth and sensing properties of In2O3 nanowires , 2007 .

[14]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[15]  Z. Fan,et al.  Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors , 2005 .

[16]  Choongho Yu,et al.  Integration of metal oxide nanobelts with microsystems for nerve agent detection , 2005 .

[17]  N. Bârsan,et al.  Template‐Free Synthesis and Assembly of Single‐Crystalline Tungsten Oxide Nanowires and Their Gas‐Sensing Properties. , 2006 .

[18]  A. Kolmakov,et al.  Toward the nanoscopic "electronic nose": hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. , 2006, Nano letters.

[19]  Jeong-O Lee,et al.  First-principles studies of SnS2 nanotubes: a potential semiconductor nanowire. , 2005, The journal of physical chemistry. B.

[20]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[21]  Cesare Soci,et al.  Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. , 2007, Nano letters.

[22]  Jenshan Lin,et al.  Hydrogen-selective sensing at room temperature with ZnO nanorods , 2005 .

[23]  Julian W. Gardner,et al.  A brief history of electronic noses , 1994 .

[24]  Wei Lu,et al.  Fully transparent thin-film transistor devices based on SnO2 nanowires. , 2007, Nano letters.

[25]  Zhiyong Fan,et al.  ZnO nanowires synthesized by vapor trapping CVD method , 2004 .

[26]  Caihong Wang,et al.  Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods , 2006 .

[27]  Margaret A. K. Ryan,et al.  CdSe‐Sensitized p‐CuSCN/Nanowire n‐ZnO Heterojunctions , 2005 .

[28]  A. Govindaraj,et al.  Sensors for the nitrogen oxides, NO 2 , NO and N 2 O, based on In 2 O , 2006 .

[29]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[30]  Xiuliang Ma,et al.  CO sensor based on Au-decorated SnO2 nanobelt , 2006 .

[31]  Daihua Zhang,et al.  Molecular memory based on nanowire-molecular wire heterostructures. , 2007, Journal of nanoscience and nanotechnology.

[32]  Jordi Arbiol,et al.  High response and stability in CO and humidity measures using a single SnO2 nanowire , 2007 .

[33]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[34]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[35]  M. Segarra,et al.  Solid Electrolyte Multisensor System for Detecting O2, CO, and NO2 , 2007 .

[36]  S. Clark,et al.  Nano-crystalline SnO2 gas sensor response to O2 and CH4 at elevated temperature investigated by XPS , 2002 .

[37]  C. N. R. Rao,et al.  H2S sensors based on tungsten oxide nanostructures , 2008 .

[38]  Young-Min Choi,et al.  The effect of metal cluster coatings on carbon nanotubes , 2006 .

[39]  Yi Cui,et al.  Hyperbranched lead selenide nanowire networks. , 2007, Nano letters.

[40]  T. Cao,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001 .

[41]  K. Chattopadhyay,et al.  Synthesis and characterization of ZnO nano/microfibers thin films by catalyst free solution route , 2005 .

[42]  Song Jin,et al.  Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. , 2007, Nano letters.

[43]  Sub-surface probe module equipped with the Karlsruhe Micronose KAMINA using a hierarchical LDA for the recognition of volatile soil pollutants , 2006 .

[44]  Lars Samuelson,et al.  Position-controlled interconnected InAs nanowire networks. , 2006, Nano letters.

[45]  C. Li,et al.  Synthesis and characterization of single-crystal indium nitride nanowires , 2004, Journal of Materials Research.

[46]  Chongwu Zhou,et al.  Transition Metal Oxide Core-Shell Nanowires: Generic Synthesis and Transport Studies , 2004 .

[47]  Q. Wan,et al.  SnO2 nanowhiskers and their ethanol sensing characteristics , 2004 .

[48]  C. Ziegler,et al.  A highly sensitive self-oscillating cantilever array for the quantitative and qualitative analysis of organic vapor mixtures , 2006 .

[49]  J. M. Baik,et al.  High-yield TiO2 nanowire synthesis and single nanowire field-effect transistor fabrication , 2008 .

[50]  Eric S. Snow,et al.  Chemical Vapor Detection Using Single-Walled Carbon Nanotubes , 2006 .

[51]  P. Moseley New trends and future prospects of thick- and thin-film gas sensors , 1991 .

[52]  M. Kuno An Overview of Solution-Based Semiconductor Nanowires: Synthesis and Optical Studies , 2008 .

[53]  Martin Moskovits,et al.  Chemical Sensing and Catalysis by One-Dimensional Metal-Oxide Nanostructures , 2004 .

[54]  Qian Wang,et al.  Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. , 2003, Nano letters.

[55]  Zhong Lin Wang,et al.  p‐Type α‐Fe2O3 Nanowires and their n‐Type Transition in a Reductive Ambient , 2007 .

[56]  Chao Li,et al.  Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires , 2003 .

[57]  N. Du,et al.  Porous Indium Oxide Nanotubes: Layer‐by‐Layer Assembly on Carbon‐Nanotube Templates and Application for Room‐Temperature NH3 Gas Sensors , 2007 .

[58]  Yoshifumi Yamamoto,et al.  Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation , 2002 .

[59]  Mary P. Ryan,et al.  Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil , 2003 .

[60]  T. Swager,et al.  Conducting-Polymer-Based Chemical Sensors: Transduction Mechanisms , 2007 .

[61]  P. Xu,et al.  High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties , 2008 .

[62]  Ying Wang,et al.  Synthesis and Electrochemical Properties of Single-Crystal V2O5 Nanorod Arrays by Template-Based Electrodeposition , 2004 .

[63]  H. Eto,et al.  Electronic noses-development and future prospects , 2022 .

[64]  C. Li,et al.  Doping dependent NH3 sensing of indium oxide nanowires , 2003 .

[65]  Segyeong Joo,et al.  Chemical sensors with integrated electronics. , 2008, Chemical reviews.

[66]  D. Janes,et al.  High performance ZnO nanowire field effect transistors with organic gate nanodielectrics: effects of metal contacts and ozone treatment , 2007 .

[67]  C. Zhou,et al.  Synthesis, Electronic Properties, and Applications of Indium Oxide Nanowires , 2003, Annals of the New York Academy of Sciences.

[68]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[69]  Peidong Yang,et al.  Dynamic manipulation and separation of individual semiconducting and metallic nanowires. , 2008, Nature photonics.

[70]  Z. Ye,et al.  Tunable n‐Type Conductivity and Transport Properties of Ga‐doped ZnO Nanowire Arrays , 2008 .

[71]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[72]  Peidong Yang,et al.  Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. , 2002, Angewandte Chemie.

[73]  Na Wang,et al.  Nanostructured Sheets of TiO Nanobelts for Gas Sensing and Antibacterial Applications , 2008 .

[74]  Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method , 2003 .

[75]  Giorgio Sberveglieri,et al.  Tin oxide nanobelts electrical and sensing properties , 2005 .

[76]  Gyu-Tae Kim,et al.  Field-effect transistor made of individual V2O5 nanofibers , 2000 .

[77]  Matteo Ferroni,et al.  Synthesis and characterization of semiconducting nanowires for gas sensing , 2007 .

[78]  Chongwu Zhou,et al.  High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates , 2008 .

[79]  David Wexler,et al.  Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons , 2008 .

[80]  K. Persaud,et al.  Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose , 1982, Nature.

[81]  J. Goschnick,et al.  Multicomponent quantification with a novel method applied to gradient gas sensor microarray signal patterns , 2007 .

[82]  C. N. R. Rao,et al.  Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides , 2007 .

[83]  Douglas C. Meier,et al.  Coupling Nanowire Chemiresistors with MEMS Microhotplate Gas Sensing Platforms , 2007 .

[84]  Tobin J. Marks,et al.  1∕f noise of SnO2 nanowire transistors , 2008 .

[85]  D. Y. Kim,et al.  Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. , 2006, Nano letters.

[86]  F. Sheu,et al.  Vertically aligned antimony nanowires as solid-state pH sensors. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[87]  Feng Huang,et al.  Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers , 2008 .

[88]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[89]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[90]  Yi Li,et al.  Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization. , 2007, Nano letters.

[91]  Takashi Fukui,et al.  Fabrication of InP∕InAs∕InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy , 2006 .

[92]  Jenshan Lin,et al.  Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods , 2005 .

[93]  Eray S. Aydil,et al.  Nanowire-based dye-sensitized solar cells , 2005 .

[94]  Elisabetta Comini,et al.  UV light activation of tin oxide thin films for NO2 sensing at low temperatures , 2001 .

[95]  Po-Chiang Chen,et al.  High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. , 2009, ACS nano.

[96]  Weon-Pil Tai,et al.  Fabrication and humidity sensing properties of nanostructured TiO2-SnO2 thin films , 2002 .

[97]  Anja Boisen,et al.  Miniature sensor suitable for electronic nose applications. , 2007, The Review of scientific instruments.

[98]  A. Kolmakov,et al.  Some recent trends in the fabrication, functionalisation and characterisation of metal oxide nanowire gas sensors , 2008 .

[99]  M. Meyyappan,et al.  A carbon nanotube sensor array for sensitive gas discrimination using principal component analysis , 2006 .

[100]  J. Goschnick,et al.  Water pollution recognition with the electronic nose KAMINA , 2005 .

[101]  Shih-Yuan Lu,et al.  Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity. , 2005, The journal of physical chemistry. B.

[102]  Eicke R. Weber,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers. , 2001 .

[103]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[104]  Ulrich Schlecht,et al.  V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines , 2005 .

[105]  Alexander Star,et al.  Gas sensor array based on metal-decorated carbon nanotubes. , 2006, The journal of physical chemistry. B.

[106]  Vladimir Dobrokhotov,et al.  Towards practicable sensors using one-dimensional nanostructures , 2008 .

[107]  Victor V. Sysoev,et al.  Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray , 2004, Sensors (Basel, Switzerland).

[108]  Qing Peng,et al.  Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials , 2005 .

[109]  Nataliya V. Roznyatovskaya,et al.  Conducting polymers in chemical sensors and arrays. , 2008, Analytica chimica acta.

[110]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[111]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[112]  Po-Chiang Chen,et al.  Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. , 2008, Nano letters.

[113]  Nicolae Barsan,et al.  Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. , 2005, Angewandte Chemie.

[114]  T. Benter,et al.  Selective measurement of HCHO in urine using direct liquid-phase fluorimetric analysis , 2005, Clinical chemistry and laboratory medicine.

[115]  David F. Cox,et al.  Fundamental characterization of clean and gas-dosed tin oxide , 1987 .

[116]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[117]  Yang-Kyu Choi,et al.  Chemical sensors based on nanostructured materials , 2007 .

[118]  High performance In 2 O 3 nanowire transistors using organic gate nanodielectrics , 2007, DRC 2007.

[119]  M. Moskovits,et al.  Observing catalysis through the agency of the participating electrons: surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver. , 2007, Nano letters.

[120]  Makoto Konagai,et al.  Highly efficient 1 μm thick CdTe solar cells with textured TCOs , 2001 .

[121]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[122]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[123]  Luca Francioso,et al.  TiO2 nanowires array fabrication and gas sensing properties , 2008 .

[124]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[125]  Wei Lu,et al.  Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application , 2008 .

[126]  Balaji Panchapakesan,et al.  Sensitivity, selectivity and stability of tin oxide nanostructures on large area arrays of microhotplates , 2006 .

[127]  Zhiyong Fan,et al.  Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications , 2006 .

[128]  T. Mallouk,et al.  Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition. , 2005, Nano letters.

[129]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[130]  Michele Penza,et al.  Carbon nanotubes-based surface acoustic waves oscillating sensor for vapour detection , 2005 .

[131]  T. Wang,et al.  Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption , 2007 .

[132]  Kyuwon Kim,et al.  Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film , 2005 .

[133]  Po-Chiang Chen,et al.  A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination , 2009, Nanotechnology.

[134]  Giorgio Sberveglieri,et al.  Gas response times of nano-scale SnO2 gas sensors as determined by the moving gas outlet technique , 2007 .

[135]  J. Goschnick,et al.  Air quality monitoring and fire detection with the Karlsruhe electronic micronose KAMINA , 2002 .

[136]  Brendan J. Kennedy,et al.  Structural Studies of Rutile-Type Metal Dioxides , 1997 .

[137]  Y. J. Chen,et al.  Linear Ethanol Sensing of SnO2 Nanorods with Extremely High Sensitivity , 2006 .

[138]  Kwang S. Kim,et al.  Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase , 2001, Science.

[139]  Tiancheng Wang,et al.  Oxygen sensing characteristics of individual ZnO nanowire transistors , 2004 .

[140]  Zhiyong Fan,et al.  β-Ga2O3 nanowires: Synthesis, characterization, and p-channel field-effect transistor , 2005 .

[141]  Peidong Yang,et al.  General route to vertical ZnO nanowire arrays using textured ZnO seeds. , 2005, Nano letters.

[142]  Martin Moskovits,et al.  Functionalizing nanowires with catalytic nanoparticles for gas sensing application. , 2008, Journal of nanoscience and nanotechnology.

[143]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[144]  Yugang Sun,et al.  High‐Performance, Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles , 2007 .

[145]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[146]  Jiaqiang Xu,et al.  Gas sensing properties of ZnO nanorods prepared by hydrothermal method , 2005 .

[147]  G. Sberveglieri,et al.  Photosensitivity activation of SnO2 thin film gas sensors at room temperature , 1996 .