On evaluation of the mean service cycle time in tandem queueing systems
暂无分享,去创建一个
[1] H. O. Hartley,et al. Universal Bounds for Mean Range and Extreme Observation , 1954 .
[2] G. J. A. Stern,et al. Queueing Systems, Volume 2: Computer Applications , 1976 .
[3] E. J. Gumbel,et al. The Maxima of the Mean Largest Value and of the Range , 1954 .
[4] Nikolai K. Krivulin. Bounds on mean cycle time in acyclic fork-join queueing networks , 2012, ArXiv.
[5] J. Sacks. Ergodocity of Queues in Series , 1960 .
[6] J. Kingman. Subadditive Ergodic Theory , 1973 .
[7] B. V. Bahr,et al. Inequalities for the $r$th Absolute Moment of a Sum of Random Variables, $1 \leqq r \leqq 2$ , 1965 .
[8] R. M. Loynes,et al. The stability of a queue with non-independent inter-arrival and service times , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] P. Konstantopoulos,et al. Estimates of cycle times in stochastic petri nets , 1992 .
[10] Robert B. Cooper,et al. Queueing systems, volume II: computer applications : By Leonard Kleinrock. Wiley-Interscience, New York, 1976, xx + 549 pp. , 1977 .
[11] Monotonicity Properties and Simple Bounds on the Mean Cycle Time in Acyclic Fork-Join Queueing Networks , 1998 .
[12] J. Marcinkiewicz. Sur les fonctions indépendantes , 1938 .
[13] Nikolai K. Krivulin,et al. A max-algebra approach to modeling and simulation of tandem queueing systems , 1995, ArXiv.
[14] D. König,et al. Queueing Networks: A Survey of Their Random Processes , 1985 .
[15] P. Glasserman,et al. Stochastic vector difference equations with stationary coefficients , 1995 .