Semantic Word Cloud Representations: Hardness and Approximation Algorithms

We study a geometric representation problem, where we are given a set \(\mathcal B\) of axis-aligned rectangles (boxes) with fixed dimensions and a graph with vertex set \(\mathcal B\). The task is to place the rectangles without overlap such that two rectangles touch if the graph contains an edge between them. We call this problem Contact Representation of Word Networks (Crown). It formalizes the geometric problem behind drawing word clouds in which semantically related words are close to each other. Here, we represent words by rectangles and semantic relationships by edges.

[1]  Kwan-Liu Ma,et al.  Semantic‐Preserving Word Clouds by Seam Carving , 2011, Comput. Graph. Forum.

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  Yifan Hu,et al.  Efficient, Proximity-Preserving Node Overlap Removal , 2010, J. Graph Algorithms Appl..

[4]  Martin Nöllenburg,et al.  Edge-Weighted Contact Representations of Planar Graphs , 2012, Graph Drawing.

[5]  Andrea Lodi,et al.  Two-dimensional packing problems: A survey , 2002, Eur. J. Oper. Res..

[6]  Peter J. Stuckey,et al.  Fast Node Overlap Removal , 2005, GD.

[7]  Martin Wattenberg,et al.  Parallel Tag Clouds to explore and analyze faceted text corpora , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[8]  Martin Wattenberg,et al.  Participatory Visualization with Wordle , 2009, IEEE Transactions on Visualization and Computer Graphics.

[9]  E. Raisz The Rectangular Statistical Cartogram , 1934 .

[10]  Joseph Y.-T. Leung,et al.  Packing Squares into a Square , 1990, J. Parallel Distributed Comput..

[11]  Sanjeev Khanna,et al.  A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem , 2005, SIAM J. Comput..

[12]  Stefan Felsner,et al.  Rectangle and Square Representations of Planar Graphs , 2013 .

[13]  Suresh Venkatasubramanian,et al.  Rectangular layouts and contact graphs , 2006, TALG.

[14]  Bongshin Lee,et al.  ManiWordle: Providing Flexible Control over Wordle , 2010, IEEE Transactions on Visualization and Computer Graphics.

[15]  Carsten Thomassen,et al.  Interval representations of planar graphs , 1986, J. Comb. Theory, Ser. B.

[16]  Jian Shen,et al.  Approximating the spanning star forest problem and its applications to genomic sequence alignment , 2007, SODA '07.

[17]  Robert E. Tarjan,et al.  Rectilinear planar layouts and bipolar orientations of planar graphs , 1986, Discret. Comput. Geom..

[18]  Timo Honkela,et al.  Self-Organizing Maps of Document Collections: A New Approach to Interactive Exploration , 1996, KDD.

[19]  Ulrik Brandes,et al.  Organizing Search Results with a Reference Map , 2012, IEEE Transactions on Visualization and Computer Graphics.

[20]  Bettina Speckmann,et al.  Area-Universal and Constrained Rectangular Layouts , 2012, SIAM J. Comput..

[21]  Noga Alon,et al.  The star arboricity of graphs , 1988, Discret. Math..

[22]  Éric Fusy,et al.  Transversal structures on triangulations: A combinatorial study and straight-line drawings , 2006, Discret. Math..

[23]  Peter Wiemer-Hastings,et al.  Latent semantic analysis , 2004, Annu. Rev. Inf. Sci. Technol..

[24]  Alexander Wolff,et al.  Semantic word cloud representations: hardness and approximation algorithms , 2013 .

[25]  Furu Wei,et al.  Context preserving dynamic word cloud visualization , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[26]  J. Petersen Die Theorie der regulären graphs , 1891 .