The qualitative representation of physical systems

The representation of physical systems using qualitative formalisms is examined in this review, with an emphasis on recent developments in the area. The push to develop reasoning systems incorporating deep knowledge originally focused on naive physical representations, but has now shifted to more formal ones based on qualitative mathematics. The qualitative differential constraint formalism used in systems like QSIM is examined, and current efforts to link this to competing representations like Qualitative Process Theory are noted. Inference and representation are intertwined, and the decision to represent notions like causality explicitly, or infer it from other properties, has shifted as the field has developed. The evolution of causal and functional representations is thus examined. Finally, a growing body of work that allows reasoning systems to utilize multiple representations of a system is identified. Dimensions along which multiple model hierarchies could be constructed are examined, including mode of behaviour, granularity, ontology, and representational depth.

[1]  Patrick J. Hayes,et al.  The Naive Physics Manifesto , 1990, The Philosophy of Artificial Intelligence.

[2]  P. Compton,et al.  A philosophical basis for knowledge acquisition , 1990 .

[3]  Benjamin Kuipers,et al.  Taming Intractible Branching in Qualitative Simulation , 1987, IJCAI.

[4]  Benjamin Kuipers,et al.  Using Incomplete Quantitative Knowledge In Qualitative Reasoning , 1988, AAAI.

[5]  Kenneth D. Forbus Commonsense physics: a review , 1988 .

[6]  Jan L. Top,et al.  Computational and Physical Causality , 1991, IJCAI.

[7]  Yumi Iwasaki,et al.  Causal Ordering in a Mixed Structure , 1988, AAAI.

[8]  Herbert A. Simon,et al.  Causality in Device Behavior , 1989, Artif. Intell..

[9]  M. Bunge Causality and modern science , 1979 .

[10]  Kenneth D. Forbus,et al.  Causal reasoning about quantities , 1989 .

[11]  Sanjaya Addanki,et al.  Contexts: Dynamic Identification of Common Parameters in Distributed Analysis of Complex Devices , 1989, IJCAI.

[12]  Sanjaya Addanki,et al.  Reasoning About Assumptions in Graphs of Models , 1989, IJCAI.

[13]  Benjamin Kuipers,et al.  QPC: A Compiler from Physical Models into Qualitative Differential Equations , 1990, AAAI.

[14]  Kenneth D. Forbus The qualitative process engine , 1989 .

[15]  Bernard P. Zeigler,et al.  Qualitative physics: towards the automation of systems problem solving , 1991, J. Exp. Theor. Artif. Intell..

[16]  Brian C. Williams,et al.  MINIMA: A Symbolic Approach to Qualitative Algebraic Reasoning , 1988, AAAI.

[17]  Elpida T. Keravnou,et al.  Deep and shallow models in medical expert systems , 1989, Artif. Intell. Medicine.

[18]  Randall Davis,et al.  Issues in Model Based Troubleshooting , 1987 .

[19]  Ivan Bratko,et al.  KARDIO - a study in deep and qualitative knowledge for expert systems , 1989 .

[20]  David Kirsh,et al.  Today the Earwig, Tomorrow Man? , 1991, Artif. Intell..

[21]  Tom Bylander,et al.  A critique of qualitative simulation from a consolidation viewpoint , 1988, IEEE Trans. Syst. Man Cybern..

[22]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artif. Intell..

[23]  Paul A. Fishwick,et al.  Qualitative methodology in simulation model engineering* , 1989, Simul..

[24]  C. Chiu,et al.  Higher Order Derivative Constraints and a QSIM-based Total Simulation Scheme , 1988 .

[25]  Jan-Erik Strömberg,et al.  Combining Qualitative and Quantitative Knowledge to Generate Models of Physical Systems , 1991, IJCAI.

[26]  Drew V. McDermott,et al.  Logic, Problem Solving, and Deduction , 1987 .

[27]  Herbert A. Simon,et al.  Theories of causal ordering: reply to de Kleer and Brown , 1989 .

[28]  D. Bobrow Qualitative Reasoning about Physical Systems , 1985 .

[29]  Douglas B. Lenat,et al.  On the thresholds of knowledge , 1987, Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications.

[30]  Michael P. Wellman Fundamental Concepts of Qualitative Probabilistic Networks , 1990, Artif. Intell..

[31]  Benjamin Kuipers,et al.  Qualitative Simulation , 1986, Artificial Intelligence.

[32]  Ramesh S. Patil,et al.  Causal representation of patient illness for electrolyte and acid-base diagnosis , 1981 .

[33]  A. C. Chiang Fundamental methods of mathematical economics , 1974 .

[34]  Enrico W. Coiera Reasoning with qualitative disease histories for diagnostic patient monitoring , 1990 .

[35]  Yumi Iwasaki,et al.  Reasoning with multiple abstraction models , 1993 .

[36]  Timothy W. Finin,et al.  What's in a Deep Model? A Characterization of Knowledge Depth in Intelligent Safety Systems , 1987, IJCAI.

[37]  Peter E. Hart,et al.  Directions for AI in the eighties , 1982, SGAR.

[38]  Dean Allemang,et al.  Exploring the No-Function-In-Structure principle , 1989, J. Exp. Theor. Artif. Intell..

[39]  Enrico W. Coiera,et al.  Qualitative Superposition , 1992, Artif. Intell..

[40]  Bernard P. Zeigler,et al.  Qualitative physics: towards the automation of systems problem solving , 1990, Proceedings [1990]. AI, Simulation and Planning in High Autonomy Systems.

[41]  Casimir A. Kulikowski,et al.  A Model-Based Method for Computer-Aided Medical Decision-Making , 1978, Artif. Intell..

[42]  Benjamin Kuipers,et al.  Qualitative Simulation as Causal Explanation , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[43]  Jeff Yung-Choa Pan Qualitative reasoning with deep-level mechanism models for diagnoses of mechanism failures , 1992 .

[44]  Kenneth D. Forbus,et al.  Reasoning about Fluids via Molecular Collections , 1987, AAAI.

[45]  Daniel S. Weld,et al.  Query-directed approximation , 1993 .

[46]  Daniel S. Weld The Use of Aggregation in Causal Simulation , 1986, Artif. Intell..

[47]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[48]  Johan de Kleer,et al.  Readings in qualitative reasoning about physical systems , 1990 .

[49]  E. Starodub,et al.  [Principles of classification of peptic ulcer]. , 1977, Vrachebnoe delo.

[50]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[51]  Daniel S. Weld Approximation Reformulations , 1990, AAAI.

[52]  Tom Bylander,et al.  Some causal models are deeper than others , 1990, Artif. Intell. Medicine.

[53]  中園 薫 A Qualitative Physics Based on Confluences , 1986 .

[54]  Arthur M. Farley,et al.  Shifting Ontological Perspectives in Reasoning About Physical Systems , 1990, AAAI.

[55]  Giordano Lanzola,et al.  Qualitative models in medical diagnosis , 1990, Artif. Intell. Medicine.

[56]  Randall Davis,et al.  Diagnostic Reasoning Based on Structure and Behavior , 1984, Artif. Intell..

[57]  Paul A. Fishwick,et al.  A Study of Terminology and Issues in Qualitative Simulation , 1989, Simul..

[58]  Yumi Iwasaki,et al.  On the Relationship between Model Abstraction and Causality: Variance of Causal Ordering under Abstraction Operations , 1990 .

[59]  Benjamin Kuipers,et al.  Non-Intersection of Trajectories in Qualitative Phase Space: A Global Constraint for Qualitative Simulation , 1988, AAAI.

[60]  A. Abu-Hanna,et al.  Adaptive, multilevel diagnosis and modeling of dynamic systems , 1990 .

[61]  Boi Faltings,et al.  Recent advances in qualitative physics , 1993 .

[62]  Robert C. Moore,et al.  Formal Theories of the Commonsense World , 1985 .

[63]  Enrico W. Coiera,et al.  Monitoring diseases with empirical and model-generated histories , 1990, Artif. Intell. Medicine.

[64]  Peter Struss,et al.  Global Filters for Qualitative Behaviors , 1988, AAAI.

[65]  William J. Long,et al.  Reasoning About State From Causation and Time in a Medical Domain , 1983, AAAI.

[66]  B. Chandrasekaran,et al.  Towards a Taxonomy of Problem Solving Types , 1983, AI Mag..

[67]  Benjamin Kuipers,et al.  Abstraction by Time-Scale in Qualitative Simulation , 1987, AAAI.

[68]  Johan de Kleer,et al.  Theories of Causal Ordering , 1986, Artif. Intell..

[69]  Daniel S. Weld Comparative Analysis , 1987, IJCAI.

[70]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..