The transcriptome of a complete episode of acute otitis media

[1]  A. Kurabi,et al.  The inflammasome adaptor ASC contributes to multiple innate immune processes in the resolution of otitis media , 2015, Innate immunity.

[2]  A. Kurabi,et al.  A Mouse Model of Otitis Media Identifies HB-EGF as a Mediator of Inflammation-Induced Mucosal Proliferation , 2014, PloS one.

[3]  D. Preciado,et al.  NTHi induction of Cxcl2 and middle ear mucosal metaplasia in mice , 2013, The Laryngoscope.

[4]  J. B. Kempton,et al.  Otitis Media Impacts Hundreds of Mouse Middle and Inner Ear Genes , 2013, PloS one.

[5]  F. Orji A Survey of the Burden of Management of Chronic Suppurative Otitis Media in a Developing Country , 2013, Annals of medical and health sciences research.

[6]  D. Weeks,et al.  A Genome-Wide Association Study of Chronic Otitis Media with Effusion and Recurrent Otitis Media Identifies a Novel Susceptibility Locus on Chromosome 2 , 2013, Journal of the Association for Research in Otolaryngology.

[7]  M. Bhutta,et al.  What Have We Learned from Murine Models of Otitis Media? , 2013, Current Allergy and Asthma Reports.

[8]  A. Kurabi,et al.  Ecrg4 Attenuates the Inflammatory Proliferative Response of Mucosal Epithelial Cells to Infection , 2013, PloS one.

[9]  F. Ceciliani,et al.  Α₁-acid glycoprotein modulates phagocytosis and killing of Escherichia coli by bovine polymorphonuclear leucocytes and monocytes. , 2013, Veterinary journal.

[10]  T. Akaike,et al.  S‐nitrosated α‐1‐acid glycoprotein kills drug‐resistant bacteria and aids survival in sepsis , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  N. Warrington,et al.  Genome-Wide Association Study to Identify the Genetic Determinants of Otitis Media Susceptibility in Childhood , 2012, PloS one.

[12]  G. Ligresti,et al.  The Acute Phase Reactant Orosomucoid-1 Is a Bimodal Regulator of Angiogenesis with Time- and Context-Dependent Inhibitory and Stimulatory Properties , 2012, PloS one.

[13]  James T. Elder,et al.  HEPARIN-BINDING EGF-LIKE GROWTH FACTOR PROMOTES EPITHELIAL-MESENCHYMAL TRANSITION IN HUMAN KERATINOCYTES , 2012, The Journal of investigative dermatology.

[14]  P. Zipfel,et al.  Haemophilus influenzae Uses the Surface Protein E To Acquire Human Plasminogen and To Evade Innate Immunity , 2012, The Journal of Immunology.

[15]  Jeffrey T. Leek,et al.  A computationally efficient modular optimal discovery procedure , 2011, Bioinform..

[16]  R. Arsenescu,et al.  Intestinal Epithelial Serum Amyloid A Modulates Bacterial Growth In Vitro and Pro-Inflammatory Responses in Mouse Experimental Colitis , 2010, BMC gastroenterology.

[17]  G. Koh,et al.  Adipocytokine Orosomucoid Integrates Inflammatory and Metabolic Signals to Preserve Energy Homeostasis by Resolving Immoderate Inflammation* , 2010, The Journal of Biological Chemistry.

[18]  M. Hernandez,et al.  CC chemokine ligand 3 overcomes the bacteriocidal and phagocytic defect of macrophages and hastens recovery from experimental otitis media in TNF−/− mice , 2010, The Journal of Immunology.

[19]  M. Hernandez,et al.  CC Chemokine Ligand 3 Overcomes the Bacteriocidal and Phagocytic Defect of Macrophages and Hastens Recovery from Experimental Otitis Media in TNF−/− Mice , 2010, The Journal of Immunology.

[20]  Steve D. M. Brown,et al.  13-P138 Regulation of TGF beta signalling by Fbxo11, the gene mutated in the Jeff Otitis Media mouse mutant , 2009, Mechanisms of Development.

[21]  M. Hernandez,et al.  TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media , 2009, Innate immunity.

[22]  Steve D. M. Brown,et al.  Regulation of TGF-β signalling by Fbxo11, the gene mutated in the Jeff otitis media mouse mutant , 2009, PathoGenetics.

[23]  A. Pozzi,et al.  Soluble HB-EGF induces epithelial-to-mesenchymal transition in inner medullary collecting duct cells by upregulating Snail-2. , 2009, American journal of physiology. Renal physiology.

[24]  M. Hernandez,et al.  Myeloid differentiation primary response gene 88 is required for the resolution of otitis media. , 2008, The Journal of infectious diseases.

[25]  J. Houwing-Duistermaat,et al.  The 4G/4G Plasminogen Activator Inhibitor-1 Genotype Is Associated With Frequent Recurrence of Acute Otitis Media , 2007, Pediatrics.

[26]  J. Ting,et al.  CATERPILLER (NLR) family members as positive and negative regulators of inflammatory responses. , 2007, Proceedings of the American Thoracic Society.

[27]  P. Mannon,et al.  The fundamental basis of inflammatory bowel disease. , 2007, The Journal of clinical investigation.

[28]  A. Ryan,et al.  Jun N-Terminal Protein Kinase Enhances Middle Ear Mucosal Proliferation during Bacterial Otitis Media , 2007, Infection and Immunity.

[29]  S. Badve,et al.  NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2 , 2007, Oncogene.

[30]  R. Matalon,et al.  Association of Proinflammatory Cytokine Gene Polymorphisms With Susceptibility to Otitis Media , 2006, Pediatrics.

[31]  Steve D. M. Brown,et al.  A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. , 2006, Human molecular genetics.

[32]  Steve D. M. Brown,et al.  Mutation at the Evi1 Locus in Junbo Mice Causes Susceptibility to Otitis Media , 2006, PLoS genetics.

[33]  J. Raynes,et al.  Serum amyloid A is an innate immune opsonin for Gram-negative bacteria. , 2006, Blood.

[34]  Tilman Brummer,et al.  Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1 , 2006, Nature Immunology.

[35]  H. Sudhoff,et al.  Role of mast cells in otitis media. , 2005, The Journal of allergy and clinical immunology.

[36]  P. Hebda,et al.  Gene expression profiles of early pneumococcal otitis media in the rat. , 2005, International journal of pediatric otorhinolaryngology.

[37]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  T. Lehman,et al.  Update on the pathogenesis and treatment of systemic onset juvenile rheumatoid arthritis , 2005, Current opinion in rheumatology.

[39]  A. Ryan,et al.  The role of Fas-mediated apoptosis in otitis media: Observations in the lpr/lpr mouse , 2005, Hearing Research.

[40]  Trey Ideker,et al.  VAMPIRE microarray suite: a web-based platform for the interpretation of gene expression data , 2005, Nucleic Acids Res..

[41]  C. Dinarello Blocking IL-1 in systemic inflammation , 2005, The Journal of experimental medicine.

[42]  S. Akira,et al.  Toll-like receptor downstream signaling , 2004, Arthritis research & therapy.

[43]  A. Netzer,et al.  Does Otitis Media in Early Childhood Affect Reading Performance in Later School Years? , 2004, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[44]  A. Gordin,et al.  Does Otitis Media in Early Childhood Affect Reading Performance in Later School Years? , 2004 .

[45]  A. Ryan,et al.  Effects of amoxicillin on cytokine and osteocalcin expression in bone tissue during experimental acute otitis media. , 2004, Cytokine.

[46]  A. Ryan,et al.  A mouse model for acute otitis media , 2003, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[47]  R. Rosenfeld,et al.  Evidence-Based Otitis Media , 2003 .

[48]  Harry Greenberg,et al.  Novel generations of influenza vaccines. , 2003, Vaccine.

[49]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[50]  Jacques Corbeil,et al.  Statistical analysis of high-density oligonucleotide arrays: a multiplicative noise model , 2002, Bioinform..

[51]  Charles A. Janeway,et al.  IRAK-M Is a Negative Regulator of Toll-like Receptor Signaling , 2002, Cell.

[52]  D. Bagger-sjöbäck,et al.  Detection and localization of interleukin-6 in the rat middle ear during experimental acute otitis media, using mRNA in situ hybridization and immunohistochemistry. , 2001, International journal of pediatric otorhinolaryngology.

[53]  J. Klein,et al.  The burden of otitis media. , 2000, Vaccine.

[54]  M. Vaneechoutte,et al.  Turnover of Haemophilus influenzae isolates in otitis-prone children. , 2000, Acta oto-rhino-laryngologica Belgica.

[55]  I. Wallace,et al.  Early Otitis Media and Phonological Development at Age 2 Years , 1996, The Laryngoscope.

[56]  A. Mantovani,et al.  Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. , 1993, Science.

[57]  A. Cerami,et al.  Selective inhibition of synthesis of enzymes for de novo fatty acid biosynthesis by an endotoxin-induced mediator from exudate cells. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Friel-Patti,et al.  Language delay in infants associated with middle ear disease and mild, fluctuating hearing impairment , 1982, Pediatric infectious disease.

[59]  W. Doyle,et al.  Recurrent pneumococcal otitis media in the chinchilla. A longitudinal study. , 1981, Archives of otolaryngology.

[60]  A. Chaudhary,et al.  Induction of cytokines and chemokines by Toll-like receptor signaling: strategies for control of inflammation. , 2010, Critical reviews in immunology.

[61]  P. Moingeon,et al.  Mucosal immunization application to allergic disease: sublingual immunotherapy. , 2007, Allergy and asthma proceedings.

[62]  E. Sanders,et al.  Immunological Status in the Aetiology of Recurrent Otitis Media with Effusion: Serum Immunoglobulin Levels, Functional Mannose-Binding Lectin and Fc Receptor Polymorphisms for IgG , 2005, Journal of Clinical Immunology.

[63]  P. Morris,et al.  Chronic suppurative otitis media Burden of Illness and Management Options , 2004 .

[64]  C. Infante-Rivard,et al.  Otitis media in children: frequency, risk factors, and research avenues. , 1993, Epidemiologic reviews.