Carbon Catabolite Control of the Metabolic Network in Bacillus subtilis

The histidine-containing protein (HPr) is the energy coupling protein of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS), which catalyzes the transport of carbohydrates in bacteria. In Bacillus subtilis and close relatives, global regulation of carbon catabolite control occurs on the binding of the complex of CcpA (catabolite control protein A) and P-Ser-HPr (seryl-phosphorylated form of HPr) to the catabolite responsive elements (cre) of the target operons, the constituent genes of which are roughly estimated to number 300. The complex of CcpA and P-Ser-HPr triggers the expression of several genes involved in the formation of acetate and acetoin, major extracellular products of B. subtilis grown on glucose. It also triggers the expression of an anabolic operon (ilv-leu) involved in the biosynthesis of branched-chain amino acids, which subsequently leads to cell propagation. On the other hand, this complex represses many genes and operons, which include an entrance gene for the TCA cycle (citZ), several transporter genes for TCA cycle-intermediates, some respiration genes, and many catabolic and anabolic genes involved in carbon, nitrogen, and phosphate metabolism, as well as for certain extracellular enzymes and secondary metabolites. Furthermore, these bacteria have CcpA-independent catabolite regulation systems, each of which involves a transcriptional repressor of CggR or CcpN. CggR and CcpN are derepressed under glycolytic and gluconeogenic growth conditions, and enhance glycolysis and gluconeogenesis respectively. Another CcpA-independent catabolite repression system involves P-His-HPr (histidyl-phosphorylated form of HPr). P-His-HPr phosphorylates and activates glycerol kinase, whose product is necessary for antitermination of the glycerol utilization operon through GlpP, the antiterminators (LicT and SacT, Y) of several operons for the utilization of less-preferred PTS-sugars, and some transcriptional activators such as LevR for the levan utilization operon. This phosphorylation is reduced due to the decreased level of P-His-HPr during active transport of a preferred PTS-carbohydrate such as glucose, resulting in catabolite repression of the target operons. Thus CcpA-dependent and independent networks for carbon metabolism play a major role in the coordinate regulation of catabolism and anabolism to ensure optimum cell propagation in the presence and the absence of a preferred PTS-carbohydrate.

[1]  Y. Fujita,et al.  myo-Inositol Catabolism in Bacillus subtilis* , 2008, Journal of Biological Chemistry.

[2]  A. Sonenshein,et al.  Control of key metabolic intersections in Bacillus subtilis , 2007, Nature Reviews Microbiology.

[3]  Yasutaro Fujita,et al.  Regulation of fatty acid metabolism in bacteria , 2007, Molecular microbiology.

[4]  Isabel de Sá-Nogueira,et al.  trans-Acting Factors and cis Elements Involved in Glucose Repression of Arabinan Degradation in Bacillus subtilis , 2007, Journal of bacteriology.

[5]  I. Moll,et al.  In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA , 2007, Nucleic acids research.

[6]  Stéphane Aymerich,et al.  Inducer-modulated cooperative binding of the tetrameric CggR repressor to operator DNA. , 2007, Biophysical journal.

[7]  Jer-sheng Lin,et al.  Regulation of the kduID operon of Bacillus subtilis by the KdgR repressor and the ccpA gene: identification of two KdgR-binding sites within the kdgR-kduI intergenic region. , 2007, Microbiology.

[8]  F. M. Hulett,et al.  Regulators of the Bacillus subtilis cydABCD Operon: Identification of a Negative Regulator, CcpA, and a Positive Regulator, ResD , 2007, Journal of bacteriology.

[9]  Yasutaro Fujita,et al.  Organization and Function of the YsiA Regulon of Bacillus subtilis Involved in Fatty Acid Degradation* , 2007, Journal of Biological Chemistry.

[10]  Andrzej T. Lulko,et al.  Transcriptome Analysis of Temporal Regulation of Carbon Metabolism by CcpA in Bacillus subtilis Reveals Additional Target Genes , 2006, Journal of Molecular Microbiology and Biotechnology.

[11]  A. Sonenshein,et al.  Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow , 2006, Molecular microbiology.

[12]  U. Gerth,et al.  The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism , 2006, Molecular microbiology.

[13]  Jörg Bernhardt,et al.  Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2‐D gel image color coding approach , 2006, Proteomics.

[14]  Soo-Keun Choi,et al.  Mechanism of CcpA-Mediated Glucose Repression of the resABCDE Operon of Bacillus subtilis , 2006, Journal of Molecular Microbiology and Biotechnology.

[15]  V. Blancato,et al.  Catabolite repression of the citST two-component system in Bacillus subtilis. , 2006, FEMS microbiology letters.

[16]  M. Schumacher,et al.  Phosphoprotein Crh-Ser46-P Displays Altered Binding to CcpA to Effect Carbon Catabolite Regulation* , 2006, Journal of Biological Chemistry.

[17]  F. M. Hulett,et al.  CcpA Causes Repression of the phoPR Promoter through a Novel Transcription Start Site, PA6 , 2006, Journal of bacteriology.

[18]  C. Schilling,et al.  Catabolite Repression and Activation in Bacillus subtilis: Dependency on CcpA, HPr, and HprK , 2005, Journal of bacteriology.

[19]  Milton H. Saier,et al.  Regulation of sigL Expression by the Catabolite Control Protein CcpA Involves a Roadblock Mechanism in Bacillus subtilis: Potential Connection between Carbon and Nitrogen Metabolism , 2005, Journal of bacteriology.

[20]  S. Brantl,et al.  Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis , 2005, Molecular microbiology.

[21]  Uwe Sauer,et al.  The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. , 2005, FEMS microbiology reviews.

[22]  A. Sonenshein,et al.  Bacillus subtilis ilvB operon: an intersection of global regulons , 2005, Molecular microbiology.

[23]  Yasutaro Fujita,et al.  Elaborate transcription regulation of the Bacillus subtilis ilv‐leu operon involved in the biosynthesis of branched‐chain amino acids through global regulators of CcpA, CodY and TnrA , 2005, Molecular microbiology.

[24]  Jeong-Ho Kim,et al.  Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription , 2005, Molecular microbiology.

[25]  S. Aymerich,et al.  CcpN (YqzB), a novel regulator for CcpA‐independent catabolite repression of Bacillus subtilis gluconeogenic genes , 2005, Molecular microbiology.

[26]  Y. Fujita,et al.  Negative Transcriptional Regulation of the ilv-leu Operon for Biosynthesis of Branched-Chain Amino Acids through the Bacillus subtilis Global Regulator TnrA , 2004, Journal of bacteriology.

[27]  M. Schumacher,et al.  Structural Basis for Allosteric Control of the Transcription Regulator CcpA by the Phosphoprotein HPr-Ser46-P , 2004, Cell.

[28]  A. Sonenshein,et al.  Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched‐chain amino acids , 2004, Molecular microbiology.

[29]  A. Sonenshein,et al.  CcpA-Dependent Regulation of Bacillus subtilis Glutamate Dehydrogenase Gene Expression , 2004, Journal of bacteriology.

[30]  B. Görke,et al.  Drastic Differences in Crh and HPr Synthesis Levels Reflect Their Different Impacts on Catabolite Repression in Bacillus subtilis , 2004, Journal of bacteriology.

[31]  A. Sonenshein,et al.  Mechanism of repression by Bacillus subtilis CcpC, a LysR family regulator. , 2003, Journal of molecular biology.

[32]  Jörg Stülke,et al.  The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB operon by the catabolite control protein CcpA. , 2003, Microbiology.

[33]  C. Costa,et al.  Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. , 2003, Microbiology.

[34]  K. Bunai,et al.  Mannitol-1-Phosphate Dehydrogenase (MtlD) Is Required for Mannitol and Glucitol Assimilation in Bacillus subtilis: Possible Cooperation of mtl and gut Operons , 2003, Journal of bacteriology.

[35]  Jörg Stülke,et al.  Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. , 2003, Metabolic engineering.

[36]  J. Lolkema,et al.  A Crh-specific function in carbon catabolite repression in Bacillus subtilis. , 2003, FEMS microbiology letters.

[37]  R. Losick,et al.  Additional Targets of the Bacillus subtilis Global Regulator CodY Identified by Chromatin Immunoprecipitation and Genome-Wide Transcript Analysis , 2003, Journal of bacteriology.

[38]  Stéphane Aymerich,et al.  Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose‐1,6‐bisphosphate , 2003, Molecular microbiology.

[39]  Jacques Haiech,et al.  Properties and Regulation of the Bifunctional Enzyme HPr Kinase/Phosphatase in Bacillus subtilis * , 2003, The Journal of Biological Chemistry.

[40]  Ivan Mijakovic,et al.  Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: A relic of early life? , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Matin,et al.  Insufficient Expression of the ilv-leu Operon Encoding Enzymes of Branched-Chain Amino Acid Biosynthesis Limits Growth of a Bacillus subtilis ccpA Mutant , 2002, Journal of bacteriology.

[42]  Michael Hecker,et al.  Transcriptome and Proteome Analysis of Bacillus subtilis Gene Expression Modulated by Amino Acid Availability , 2002, Journal of bacteriology.

[43]  A. Sonenshein,et al.  Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes , 2002, Molecular microbiology.

[44]  J. Deutscher,et al.  Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P~GlpK dephosphorylation control Bacillus subtilis glpFK expression , 2002, Molecular microbiology.

[45]  A. Sonenshein,et al.  Regulation of the Bacillus subtilis ccpC gene by CcpA and CcpC , 2002, Molecular microbiology.

[46]  L. Wray,et al.  Bacillus subtilis Glutamine Synthetase Controls Gene Expression through a Protein-Protein Interaction with Transcription Factor TnrA , 2001, Cell.

[47]  Yasutaro Fujita,et al.  Involvement of Two Distinct Catabolite-Responsive Elements in Catabolite Repression of the Bacillus subtilis myo-Inositol (iol) Operon , 2001, Journal of bacteriology.

[48]  J. Sekiguchi,et al.  Regulation of the glv Operon in Bacillus subtilis: YfiA (GlvR) Is a Positive Regulator of the Operon That Is Repressed through CcpA and cre , 2001, Journal of bacteriology.

[49]  M. Hecker,et al.  Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon , 2001, Molecular microbiology.

[50]  V. Monedero,et al.  Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene. , 2001, Journal of molecular microbiology and biotechnology.

[51]  A. Sonenshein,et al.  Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. , 2001, Genes & development.

[52]  M. Débarbouillé,et al.  Regulation of the Acetoin Catabolic Pathway Is Controlled by Sigma L in Bacillus subtilis , 2001, Journal of bacteriology.

[53]  T. Henkin,et al.  Transcriptional Activation of the Bacillus subtilis ackA Promoter Requires Sequences Upstream of the CcpA Binding Site , 2001, Journal of bacteriology.

[54]  W. Weyler,et al.  Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole‐genome analyses , 2001, Molecular microbiology.

[55]  K. Kobayashi,et al.  Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. , 2001, Nucleic acids research.

[56]  H. Saxild,et al.  Catabolite repression of dra-nupC-pdp operon expression in Bacillus subtilis. , 2000, Microbiology.

[57]  W. Konings,et al.  Catabolite Repression and Induction of the Mg2+-Citrate Transporter CitM of Bacillus subtilis , 2000, Journal of bacteriology.

[58]  T. Henkin,et al.  Bacillus subtilis ccpA Gene Mutants Specifically Defective in Activation of Acetoin Biosynthesis , 2000, Journal of bacteriology.

[59]  M H Saier,et al.  GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs. , 2000, Journal of molecular microbiology and biotechnology.

[60]  Xiaohui Zhang,et al.  Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis , 2000, Molecular microbiology.

[61]  J. Sekiguchi,et al.  The CitST two‐component system regulates the expression of the Mg‐citrate transporter in Bacillus subtilis , 2000, Molecular microbiology.

[62]  S. Aymerich,et al.  Two Glyceraldehyde-3-phosphate Dehydrogenases with Opposite Physiological Roles in a Nonphotosynthetic Bacterium* , 2000, The Journal of Biological Chemistry.

[63]  L. Hederstedt,et al.  Genes required for cytochrome c synthesis inBacillus subtilis , 2000, Molecular microbiology.

[64]  A. Ogiwara,et al.  Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. , 2000, Nucleic acids research.

[65]  Y. Fujita,et al.  Systematic study of gene expression and transcription organization in the gntZ-ywaA region of the Bacillus subtilis genome. , 2000, Microbiology.

[66]  K. Asai,et al.  Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. , 2000, Microbiology.

[67]  A. Sonenshein,et al.  CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. , 2000, Journal of molecular biology.

[68]  A. di Pietro,et al.  The HPr Kinase from Bacillus subtilis Is a Homo-oligomeric Enzyme Which Exhibits Strong Positive Cooperativity for Nucleotide and Fructose 1,6-Bisphosphate Binding* , 2000, The Journal of Biological Chemistry.

[69]  A. Danchin,et al.  Catabolite Regulation of the pta Gene as Part of Carbon Flow Pathways in Bacillus subtilis , 1999, Journal of bacteriology.

[70]  Michael Hecker,et al.  Role of CcpA in Regulation of the Central Pathways of Carbon Catabolism in Bacillus subtilis , 1999, Journal of bacteriology.

[71]  J. Stülke,et al.  Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT. , 1999, Journal of molecular biology.

[72]  P. Nygaard,et al.  Nucleosides as a carbon source in Bacillus subtilis: characterization of the drm-pupG operon. , 1999, Microbiology.

[73]  A. Sonenshein,et al.  An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[74]  M. Hecker,et al.  Regulation of the lic Operon ofBacillus subtilis and Characterization of Potential Phosphorylation Sites of the LicR Regulator Protein by Site-Directed Mutagenesis , 1999, Journal of bacteriology.

[75]  B. Shin,et al.  Regulation of the Bacillus subtilis phosphotransacetylase gene. , 1999, Journal of biochemistry.

[76]  A. Steinbüchel,et al.  Biochemical and Molecular Characterization of theBacillus subtilis Acetoin Catabolic Pathway , 1999, Journal of bacteriology.

[77]  J. Deutscher,et al.  Phosphorylation of HPr and Crh by HprK, Early Steps in the Catabolite Repression Signalling Pathway for the Bacillus subtilis Levanase Operon , 1999, Journal of bacteriology.

[78]  M. Arnaud,et al.  Role of BkdR, a Transcriptional Activator of the SigL-Dependent Isoleucine and Valine Degradation Pathway inBacillus subtilis , 1999, Journal of bacteriology.

[79]  J. Deutscher,et al.  Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon. , 1999, Journal of molecular biology.

[80]  L. Wray,et al.  Expression of the Bacillus subtilis acsAGene: Position and Sequence Context Affect cre-Mediated Carbon Catabolite Repression , 1998, Journal of bacteriology.

[81]  Wei Liu,et al.  Pho signal transduction network reveals direct transcriptional regulation of one two‐component system by another two‐component regulator: Bacillus subtilis PhoP directly regulates production of ResD , 1998, Molecular microbiology.

[82]  T. Henkin,et al.  Transcriptional Activation of the Bacillus subtilis ackA Gene Requires Sequences Upstream of the Promoter , 1998, Journal of bacteriology.

[83]  S. Ehrlich,et al.  The kdgRKAT operon of Bacillus subtilis: detection of the transcript and regulation by the kdgR and ccpA genes. , 1998, Microbiology.

[84]  M. Dahl,et al.  Molecular analysis of the interaction between the Bacillus subtilis trehalose repressor TreR and the tre operator , 1998, Molecular and General Genetics MGG.

[85]  G. Rapoport,et al.  Antagonistic effects of dual PTS‐catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR , 1998, Molecular microbiology.

[86]  C Rivolta,et al.  A 35.7 kb DNA fragment from the Bacillus subtilis chromosome containing a putative 12.3 kb operon involved in hexuronate catabolism and a perfectly symmetrical hypothetical catabolite-responsive element. , 1998, Microbiology.

[87]  S. Fisher,et al.  Transcription–repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons , 1998, Molecular microbiology.

[88]  C. Rivolta,et al.  A novel protein kinase that controls carbon catabolite repression in bacteria , 1998, Molecular microbiology.

[89]  J. Deutscher,et al.  New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[90]  I. Paulsen,et al.  CcpB, a Novel Transcription Factor Implicated in Catabolite Repression in Bacillus subtilis , 1998, Journal of bacteriology.

[91]  I. Sá-Nogueira,et al.  Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization , 1997, Journal of bacteriology.

[92]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[93]  R. Klevit,et al.  Binding of the Catabolite Repressor Protein CcpA to Its DNA Target Is Regulated by Phosphorylation of its Corepressor HPr* , 1997, The Journal of Biological Chemistry.

[94]  S Baumberg,et al.  Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA‐mediated assembly of a transcriptional activator at catabolic sites , 1997, Molecular microbiology.

[95]  G. Chambliss,et al.  Contacts between Bacillus subtilis catabolite regulatory protein CcpA and amyO target site. , 1997, Nucleic acids research.

[96]  J. Deutscher,et al.  The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Y. Fujita,et al.  Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis , 1997, Journal of Bacteriology.

[98]  M. Rose,et al.  Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT , 1997, Molecular microbiology.

[99]  M. Débarbouillé,et al.  Role of the transcriptional activator RocR in the arginine‐degradation pathway of Bacillus subtilis , 1997, Molecular microbiology.

[100]  H. de Lencastre,et al.  The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. , 1997, Microbiology.

[101]  Y. Fujita,et al.  Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite‐responsive elements , 1997, Molecular microbiology.

[102]  M. Hecker,et al.  Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis , 1997, Journal of bacteriology.

[103]  M. Dahl,et al.  Analysis of DNA flanking the treA gene of Bacillus subtilis reveals genes encoding a putative specific enzyme IITre and a potential regulator of the trehalose operon. , 1996, Gene.

[104]  M. Saier,et al.  Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr , 1996, Journal of bacteriology.

[105]  C. Moran,et al.  A sigma E dependent operon subject to catabolite repression during sporulation in Bacillus subtilis , 1996, Journal of bacteriology.

[106]  M. Hecker,et al.  Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression , 1996, Journal of bacteriology.

[107]  M. Hecker,et al.  LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family , 1996, Journal of bacteriology.

[108]  S. Ehrlich,et al.  Regulators of aerobic and anaerobic respiration in Bacillus subtilis , 1996, Journal of bacteriology.

[109]  H. Saxild,et al.  Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein , 1996, Journal of bacteriology.

[110]  G. Rapoport,et al.  Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon , 1995, Journal of bacteriology.

[111]  G. Rapoport,et al.  The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon , 1995, Journal of bacteriology.

[112]  D. le Coq,et al.  A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon. , 1995, Microbiology.

[113]  W. Hillen,et al.  Contributions of Xy1R, CcpA and HPr to catabolite repression of the xyl operon in Bacillus subtilis , 1995 .

[114]  M. Hecker,et al.  Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis , 1995, Journal of bacteriology.

[115]  Y. Fujita,et al.  Specific recognition of the Bacillus subtilis gnt cis‐acting catabolite‐responsive element by a protein complex formed between CcpA and seryl‐phosphorylated HPr , 1995, Molecular microbiology.

[116]  G. Chambliss,et al.  Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA , 1995, Journal of bacteriology.

[117]  M. Débarbouillé,et al.  Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. , 1995, Journal of molecular biology.

[118]  W. Hillen,et al.  Protein kinase‐dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram‐positive bacteria , 1995, Molecular microbiology.

[119]  Y. Fujita,et al.  Possible function and some properties of the CcpA protein of Bacillus subtilis. , 1994, Microbiology.

[120]  T. Henkin,et al.  Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA , 1994, Journal of bacteriology.

[121]  M. Saier,et al.  Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis , 1994, Journal of bacteriology.

[122]  L. Wray,et al.  Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site , 1994, Journal of bacteriology.

[123]  W. Hillen,et al.  Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression , 1994, Journal of bacteriology.

[124]  Y. Fujita,et al.  Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein , 1994, Journal of bacteriology.

[125]  T. Henkin,et al.  Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis , 1993, Molecular microbiology.

[126]  N. Najimudin,et al.  Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin , 1993, Journal of bacteriology.

[127]  Y. Fujita,et al.  Promoter-independent catabolite repression of the Bacillus subtilis gnt operon. , 1993, Journal of biochemistry.

[128]  H. Zalkin,et al.  Repression of Escherichia coli purB is by a transcriptional roadblock mechanism , 1992, Journal of bacteriology.

[129]  H. Shoun,et al.  Analysis of the transcriptional activity of the hut promoter in Bacillus subtilis and identification of a cis‐acting regulatory region associated with catabolite repression downstream from the site of transcription , 1992, Molecular microbiology.

[130]  M. Saier,et al.  Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. , 1992, The Journal of biological chemistry.

[131]  J. Calvo,et al.  Transcriptional regulation of the ilv-leu operon of Bacillus subtilis , 1992, Journal of bacteriology.

[132]  M. Débarbouillé,et al.  The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[133]  W. Hillen,et al.  Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame , 1991, Molecular and General Genetics MGG.

[134]  W. Nicholson,et al.  Catabolite repression of α amylase gene expression in Bacillus subtilis involves a trans‐acting gene product homologous to the Escherichia coli lacl and galR repressors , 1991, Molecular microbiology.

[135]  M. Débarbouillé,et al.  Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. , 1990, Journal of molecular biology.

[136]  M. Weickert,et al.  Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[137]  A. Fouet,et al.  The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators , 1990, Journal of bacteriology.

[138]  S. Aymerich,et al.  Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system , 1990, Journal of bacteriology.

[139]  K. Furukawa,et al.  Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon , 1988, Journal of bacteriology.

[140]  W. Nicholson,et al.  Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. , 1987, Journal of molecular biology.

[141]  Y. Fujita,et al.  Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. , 1986, The Journal of biological chemistry.

[142]  Y. Fujita,et al.  Catabolite repression of inositol dehydrogenase and gluconate kinase syntheses in Bacillus subtilis. , 1984, Biochimica et biophysica acta.

[143]  E. Freese,et al.  Purification and properties of fructose-1,6-bisphosphatase of Bacillus subtilis. , 1979, The Journal of biological chemistry.

[144]  J. Lopez,et al.  Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis , 1977, Journal of bacteriology.

[145]  I. Pastan,et al.  Cyclic AMP regulates Catabolite and Transient Repression in E. coli , 1969, Nature.

[146]  S. Roseman,et al.  PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[147]  Y. Fujita,et al.  Carbon catabolite control and metabolic networks mediated by the CcpA protein in Bacillus subtilis , 2007 .

[148]  Kenta Nakai,et al.  BTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics , 2004, Nucleic Acids Res..

[149]  Isabelle Martin-Verstraete,et al.  Carbohydrate Uptake and Metabolism , 2002 .

[150]  R. Losick,et al.  Bacillus Subtilis and Its Closest Relatives: From Genes to Cells , 2001 .

[151]  W. Hillen,et al.  Regulation of carbon catabolism in Bacillus species. , 2000, Annual review of microbiology.

[152]  P. Glaser,et al.  Identification and Characterization of a New b-Glucoside Utilization System inBacillus subtilis , 1997 .

[153]  A. Sancar DNA excision repair. , 1996, Annual review of biochemistry.

[154]  G. Chambliss Carbon Source-Mediated Catabolite Repression , 1993 .

[155]  P. Fink Biosynthesis of the Branched-Chain Amino Acids , 1993 .

[156]  P. Aguilar,et al.  Biosynthesis and Function of Membrane Lipids , 1993 .

[157]  R. Losick,et al.  Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics , 1993 .

[158]  Y. Fujita,et al.  Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus. , 1990, Nucleic acids research.