Channel estimation and precoding in closed-loop distributed multi-antenna systems

Today’s wireless cellular systems are limited by inter-cell interference. Coordinated multi-point transmission and reception (CoMP) is a promising approach to cope with this problem. Here, multiple base stations act as a distributed antenna system, exchanging coordination information and potentially user data via backhaul in order to reduce this interference, increasing spectral efficiency and generating a more homogeneous user experience throughout the entire cell, especially at the currently weak cell edges. This dissertation aims at enabling coordinated multi-point systems by dealing with its current realization challenges. Accurate channel knowledge is required both at transmitter and receiver side in order to realize the CoMP gains. Hence, practical channel estimation algorithms are investigated and developed in order to get as accurate channel knowledge as possible with manageable computational complexity under realistic system operation points. Especially the often neglected obtainment of statistical parameter knowledge is included here, which is challenging under dynamic user scheduling conditions. A multi-user multi-cell channel estimator is provided which, even for larger number of coordinated cells, can get receiver performance fairly close to performance with perfect channel knowledge. Furthermore, different downlink precoding and receive combining strategies are compared against each other under imperfect channel knowledge. As the number of coordinated cells - the cluster size - is limited in practice, mobiles at cluster edges suffer from inter-cluster interference. A novel patented precoding and control signaling scheme is introduced in order to deal with the inter-cluster interference. Heutige zellulare Mobilfunksysteme sind begrenzt durch Interzell-Interferenz. Koordinierte Mehrpunkt-Sende- und Empfangsverfahren (“Coordinated multi-point transmission and reception” - CoMP) sind ein vielversprechender Ansatz, um das Interferenzproblem anzugehen. Hierbei agieren mehrere Basisstationen als ein verteiltes Mehrantennensystem und tauschen Koordinierungsinformationen sowie optional auch Nutzerdaten mit Hilfe des “Backhauls” aus, um den Einflus der Interferenz zu reduzieren. Dadurch wird die spektrale Effizienz erhoht und eine homogenere erlebte Nutzerqualitat uber die ganze Zelle geschaffen, was insbesondere die Situation am Zellrand verbessert. Diese Dissertation zielt darauf ab, Systeme mit koordinierten Mehrpunkt-Verfahren in die Praxis umzusetzen, indem begrenzende Faktoren bei der Umsetzung gelost werden. Exakte Kenntnis des aktuellen Funkkanals wird sowohl am Sender als auch am Empfanger benotigt, um die CoMP-Gewinne realisieren zu konnen. Daher werden in dieser Arbeit praktikable Kanalschatzalgorithmen unter machbarem Komplexitatsaufwand untersucht und entwickelt, um moglichst genaues Kanalwissen unter realistischen Systemarbeitspunkten zu erlangen. Besonders die oft vernachlassigte Gewinnung von statistischem Parameterwissen ist in dieser Arbeit inbegriffen, wobei die erschwerende dynamische Nutzerzuweisung berucksichtigt ist. Ein Mehrbenutzer-Mehrzell-Kanalschatzer wird erarbeitet, der selbst fur eine grosere Anzahl koordinierter Zellen, eine Leistungsfahigkeit des Empfangers erreicht, die nah an perfektes Kanalwissen heranreicht. Ein weiterer Aspekt dieser Arbeit ist der Vergleich verschiedener Mehrantennen-Sende- und Empfangsstrategien in der Abwartsstrecke unter unvollkommenem Kanalwissen. Da die Zahl der koordinierbaren Zellen, d.h. die Zellverbunds-Grose, in der Praxis begrenzt ist, erfahren Mobilgerate am Rand des Zellverbunds Interferenzen von Nachbar-Zellverbanden. In dieser Dissertation wird ein neuartiges Verfahren erarbeitet, das auch patentiert wurde, um diese Interferenz zu reduzieren.

[1]  Franco Fuschini,et al.  The Cellular Concept , 2015 .

[2]  Geordie George,et al.  System-level performance of distributed cooperation , 2012, 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[3]  Stephan ten Brink,et al.  Multi-Stage Channel Estimation across Multiple Cells in Uplink Joint Reception , 2013, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).

[4]  Norman C. Beaulieu,et al.  A comparison of SNR estimation techniques for the AWGN channel , 2000, IEEE Trans. Commun..

[5]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[6]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[7]  Thorsten Wild A Rake-Finger Based Efficient Channel State Information Feedback Compression Scheme for the MIMO OFDM FDD Downlink , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[8]  R. Valenzuela,et al.  Capacities of multi-element transmit and receive antennas: Correlations and keyholes , 2000 .

[9]  Thorsten Wild Successive user insertion for long-term adaptive beams with SDMA using short-term CQI , 2007 .

[10]  Robert F. H. Fischer,et al.  Blind equalization for digital cable transmission with Tomlinson-Harashima precoding and shaping , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[11]  Wilfried Gappmair,et al.  Cramer-Rao Lower Bound for Non-Data-Aided SNR Estimation of Linear Modulation Schemes , 2008, IEEE Transactions on Communications.

[12]  Shlomo Shamai,et al.  Enhancing the cellular downlink capacity via co-processing at the transmitting end , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[13]  Stephan ten Brink,et al.  Limits of channel estimation and signal combining for multipoint cellular radio (CoMP) , 2011, 2011 8th International Symposium on Wireless Communication Systems.

[14]  G. Caire,et al.  Feedback schemes for multiuser MIMO-OFDM downlink , 2008, 2008 Information Theory and Applications Workshop.

[15]  X. You,et al.  Subspace-based noise variance and SNR estimation for MIMO OFDM systems , 2006 .

[16]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[17]  Kiyomichi Araki,et al.  Pilot Symbol Aided MAP-Based 3D Channel Estimation for Multi-User MIMO-OFDM Systems , 2006, IEICE Trans. Commun..

[18]  N.D. Sidiropoulos,et al.  On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm , 2005, IEEE Transactions on Signal Processing.

[19]  Andrew C. Singer,et al.  Turbo Equalization: An Overview , 2011, IEEE Transactions on Information Theory.

[20]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications , 1949 .

[21]  Rohit U. Nabar,et al.  Introduction to Space-Time Wireless Communications , 2003 .

[22]  Federico Boccardi,et al.  User-centric architectures: Enabling CoMP via hardware virtualization , 2012, 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC).

[23]  Robert W. Heath,et al.  Blind channel identification and equalization in OFDM-based multiantenna systems , 2002, IEEE Trans. Signal Process..

[24]  Frank Schaich,et al.  Quantitative analysis of split base station processing and determination of advantageous architectures for LTE , 2013, Bell Labs Technical Journal.

[25]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[26]  Thorsten Wild Coping with out-of-cluster leakage in downlink coordinated multi-point , 2011, 2011 8th International Symposium on Wireless Communication Systems.

[27]  Xiaohu You,et al.  Subspace-based noise variance and SNR estimation for OFDM systems [mobile radio applications] , 2005, IEEE Wireless Communications and Networking Conference, 2005.

[28]  Frank Schaich,et al.  Universal-filtered multi-carrier technique for wireless systems beyond LTE , 2013, 2013 IEEE Globecom Workshops (GC Wkshps).

[29]  Joachim Speidel,et al.  Performance of the LTE Uplink with Intra-Site Joint Detection and Joint Link Adaptation , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[30]  Robert W. Heath,et al.  Exploiting limited feedback in tomorrow's wireless communication networks , 2008, IEEE Journal on Selected Areas in Communications.

[31]  Patrick Marsch,et al.  Coordinated Multi-Point under a Constrained Backhaul and Imperfect Channel Knowledge , 2010 .

[32]  Federico Boccardi,et al.  A Near-Optimum Technique using Linear Precoding for the MIMO Broadcast Channel , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[33]  J. Salo,et al.  An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM) , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[34]  Emil Björnson,et al.  Receive Combining vs. Multi-Stream Multiplexing in Downlink Systems With Multi-Antenna Users , 2012, IEEE Transactions on Signal Processing.

[35]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[36]  F. Ananasso Nulling performance of null-steering arrays with digital phase-only weights , 1981 .

[37]  C. Baird,et al.  Performance criteria for narrowband array processing , 1971, CDC 1971.

[39]  Wei Yu,et al.  Multi-Cell MIMO Cooperative Networks: A New Look at Interference , 2010, IEEE Journal on Selected Areas in Communications.

[40]  Thorsten Wild,et al.  Test of Downlink Joint Transmission with Distributed Antennas , 2013, WSA.

[41]  Stephan ten Brink,et al.  Joint channel estimation across multiple cells in coordinated multi-point , 2012, 2012 International Symposium on Wireless Communication Systems (ISWCS).

[42]  Marc Moonen,et al.  Optimal training design for MIMO OFDM systems in mobile wireless channels , 2003, IEEE Trans. Signal Process..

[43]  Aaron D. Wyner,et al.  Shannon-theoretic approach to a Gaussian cellular multiple-access channel , 1994, IEEE Trans. Inf. Theory.

[44]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .

[45]  Robert F. H. Fischer,et al.  Network MIMO Downlink Transmission , 2010 .

[46]  Frank Schaich,et al.  5G air interface design based on Universal Filtered (UF-)OFDM , 2014, 2014 19th International Conference on Digital Signal Processing.

[47]  R. Clarke A statistical theory of mobile-radio reception , 1968 .

[48]  Ari Hottinen,et al.  Increasing downlink cellular throughput with limited network MIMO coordination , 2009, IEEE Transactions on Wireless Communications.

[49]  Patrick Robertson,et al.  Two-dimensional pilot-symbol-aided channel estimation by Wiener filtering , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[50]  Frank Schaich,et al.  5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications , 2014, IEEE Communications Magazine.

[51]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[52]  Sivarama Venkatesan,et al.  Coordinating Base Stations for Greater Uplink Spectral Efficiency in a Cellular Network , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.

[53]  Jan Christoffersson,et al.  LTE Downlink Inter-Cell Interference Assessment in an Existing GSM Metropolitan Deployment , 2010, 2010 IEEE 72nd Vehicular Technology Conference - Fall.

[54]  Gerhard Fettweis,et al.  GFDM - Generalized Frequency Division Multiplexing , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[55]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[56]  Preben E. Mogensen,et al.  A stochastic MIMO radio channel model with experimental validation , 2002, IEEE J. Sel. Areas Commun..

[57]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[58]  Chris T. K. Ng,et al.  Linear Precoding in Cooperative MIMO Cellular Networks with Limited Coordination Clusters , 2010, IEEE Journal on Selected Areas in Communications.

[59]  B. Sklar,et al.  Rayleigh fading channels in mobile digital communication systems Part I: Characterization , 1997, IEEE Commun. Mag..

[60]  C.H. van Berkel,et al.  Multi-core for mobile phones , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.

[61]  S. Weinstein,et al.  Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform , 1971 .

[62]  T. Kailath,et al.  Estimation of Signal Parameters via Rotational Invariance Techniques - ESPRIT , 1986 .

[63]  Thorsten Wild Comparing Downlink Coordinated Multi-Point Schemes with Imperfect Channel Knowledge , 2011, 2011 IEEE Vehicular Technology Conference (VTC Fall).

[64]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[65]  Andrea J. Goldsmith,et al.  Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels , 2003, IEEE Trans. Inf. Theory.

[66]  Lajos Hanzo,et al.  Joint Channel Impulse Response and Noise-Variance Estimation for OFDM/SDMA Systems Based on Expectation Maximization , 2010, 2010 IEEE 72nd Vehicular Technology Conference - Fall.

[67]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[68]  Nader Sheikholeslami Alagha,et al.  Cramer-Rao bounds of SNR estimates for BPSK and QPSK modulated signals , 2001, IEEE Communications Letters.

[69]  Gerhard Fettweis,et al.  Coordinated Multi-Point in Mobile Communications: From Theory to Practice , 2011 .

[70]  Danish Aziz,et al.  A simple model for imperfect channel state information and its application for the assessment of Interference Alignment , 2012, 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[71]  Yihai Zhu,et al.  Channel Estimation for Frequency Division Duplexing Multi-user Massive MIMO Systems via Tensor Compressive Sensing , 2017 .

[72]  R. Chang Synthesis of band-limited orthogonal signals for multichannel data transmission , 1966 .

[73]  Holger Boche,et al.  Iterative multiuser uplink and downlink beamforming under SINR constraints , 2005, IEEE Transactions on Signal Processing.

[74]  Andrea J. Goldsmith,et al.  On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming , 2006, IEEE Journal on Selected Areas in Communications.

[75]  D. G. Brennan,et al.  Linear diversity combining techniques , 2003 .

[76]  Behrouz Farhang-Boroujeny,et al.  OFDM Versus Filter Bank Multicarrier , 2011, IEEE Signal Processing Magazine.

[77]  Lars Thiele,et al.  Multi-Cell Channel Estimation using Virtual Pilots , 2008, VTC Spring 2008 - IEEE Vehicular Technology Conference.

[78]  Sergio Verdú,et al.  The capacity region of the symbol-asynchronous Gaussian multiple-access channel , 1989, IEEE Trans. Inf. Theory.

[79]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[80]  Martin Haardt,et al.  Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels , 2004, IEEE Transactions on Signal Processing.

[81]  Ali H. Sayed,et al.  Adaptive Filters , 2008 .

[82]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[83]  Joachim Speidel,et al.  An adaptive two-dimensional channel estimator for wireless OFDM with application to mobile DVB-T , 2000 .

[84]  Thorsten Wild,et al.  Multi-antenna OFDM channel feedback compression exploiting sparsity , 2013, EW.

[85]  Syed Ali Jafar,et al.  Interference Alignment and Degrees of Freedom of the $K$-User Interference Channel , 2008, IEEE Transactions on Information Theory.

[86]  G. Matz,et al.  Improved MMSE estimation of correlated MIMO channels using a structured correlation estimator , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[87]  Gordon L. Stüber,et al.  Receiver implementation for a MIMO OFDM system , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[88]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[89]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[90]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[91]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[92]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[93]  Ali H. Sayed,et al.  A Leakage-Based Precoding Scheme for Downlink Multi-User MIMO Channels , 2007, IEEE Transactions on Wireless Communications.

[94]  Alfred O. Hero,et al.  Shrinkage Algorithms for MMSE Covariance Estimation , 2009, IEEE Transactions on Signal Processing.

[95]  J.H. Winters,et al.  Optimum combining in digital mobile radio with cochannel interference , 1984, IEEE Transactions on Vehicular Technology.

[96]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[97]  Frank Schaich,et al.  Waveform Contenders for 5G - Suitability for Short Packet and Low Latency Transmissions , 2014, 2014 IEEE 79th Vehicular Technology Conference (VTC Spring).