Some Recent Advances in Multiscale Geometric Analysis of Point Clouds

We discuss recent work based on multiscale geometric analyis for the study of large data sets that lie in high-dimensional spaces but have low-dimensional structure. We present three applications: the first one to the estimation of intrinsic dimension of sampled manifolds, the second one to the construction of multiscale dictionaries, called Geometric Wavelets, for the analysis of point clouds, and the third one to the inference of point clouds modeled as unions of multiple planes of varying dimensions.

[1]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[2]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[3]  Floris Takens,et al.  On the numerical determination of the dimension of an attractor , 1985 .

[4]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[5]  G. David Morceaux de graphes lipschitziens et integrales singulières sur une surface. , 1988 .

[6]  Peter W. Jones Rectifiable sets and the Traveling Salesman Problem , 1990 .

[7]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[8]  S. Semmes,et al.  Singular integrals and rectifiable sets in R[n] : au-delà des graphes lipschitziens , 1991 .

[9]  G. David Wavelets and Singular Integrals on Curves and Surfaces , 1991 .

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[12]  S. Semmes,et al.  Analysis of and on uniformly rectifiable sets , 1993 .

[13]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[14]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[15]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[16]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[17]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[19]  S. Mallat A wavelet tour of signal processing , 1998 .

[20]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[21]  S. Mallat VI – Wavelet zoom , 1999 .

[22]  R. Burton,et al.  Consistency of the Takens estimator for the correlation dimension , 1999 .

[23]  Pei-Chen Lo Three-dimensional filtering approach to brain potential mapping , 1999, IEEE Transactions on Biomedical Engineering.

[24]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[25]  S. Semmes,et al.  Uniform rectifiability and quasiminimizing sets of arbitrary codimension , 2000 .

[26]  V. Koltchinskii Empirical geometry of multivariate data: a deconvolution approach , 2000 .

[27]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[28]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[29]  A. G. Flesia,et al.  Can recent innovations in harmonic analysis `explain' key findings in natural image statistics? , 2001, Network.

[30]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[31]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[32]  I. Graham,et al.  Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth , 2001, Journal of mathematical biology.

[33]  Jean-Luc Starck,et al.  Multiscale geometric analysis for 3D catalogs , 2002, SPIE Astronomical Telescopes + Instrumentation.

[34]  Mikhail Belkin,et al.  Using manifold structure for partially labelled classification , 2002, NIPS 2002.

[35]  D. Donoho,et al.  Multiscale Geometric Analysis for 3-D Catalogues , 2002 .

[36]  A. Vinciarelli,et al.  Estimating the Intrinsic Dimension of Data with a Fractal-Based Method , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[38]  Hongyuan Zha,et al.  Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.

[39]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[40]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[42]  D. Donoho,et al.  Hessian Eigenmaps : new locally linear embedding techniques for high-dimensional data , 2003 .

[43]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[44]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.

[45]  Robert Krauthgamer,et al.  Measured Descent: A New Embedding Method for Finite Metrics , 2004, FOCS.

[46]  Richard L. Hudson,et al.  THE (MIS)BEHAVIOR OF MARKETS , 2004 .

[47]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[48]  Francesco Camastra,et al.  Intrinsic Dimension Estimation of Data: An Approach Based on Grassberger–Procaccia's Algorithm , 2001, Neural Processing Letters.

[49]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[50]  Alfred O. Hero,et al.  Learning intrinsic dimension and intrinsic entropy of high-dimensional datasets , 2004, 2004 12th European Signal Processing Conference.

[51]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Michael Elad,et al.  K-SVD : DESIGN OF DICTIONARIES FOR SPARSE REPRESENTATION , 2005 .

[53]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Wolfgang Dahmen,et al.  Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions , 2005, J. Mach. Learn. Res..

[55]  Lawrence K. Saul,et al.  Analysis and extension of spectral methods for nonlinear dimensionality reduction , 2005, ICML.

[56]  Matthias Hein,et al.  Intrinsic dimensionality estimation of submanifolds in Rd , 2005, ICML.

[57]  Svetlana Lazebnik,et al.  Estimation of Intrinsic Dimensionality Using High-Rate Vector Quantization , 2005, NIPS.

[58]  Ronald R. Coifman,et al.  Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions , 2005, SPIE Optics + Photonics.

[59]  Sridhar Mahadevan,et al.  Value Function Approximation with Diffusion Wavelets and Laplacian Eigenfunctions , 2005, NIPS.

[60]  Richard G. Baraniuk,et al.  The multiscale structure of non-differentiable image manifolds , 2005, SPIE Optics + Photonics.

[61]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[62]  Matthias Hein,et al.  Intrinsic Dimensionality Estimation of Submanifolds in Euclidean space , 2005, ICML 2005.

[63]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[64]  Tony F. Chan,et al.  Image processing and analysis , 2005 .

[65]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[66]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[67]  Robert M. Haralick,et al.  Nonlinear Manifold Clustering By Dimensionality , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[68]  A. Hero,et al.  De-Biasing for Intrinsic Dimension Estimation , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[69]  Csaba Szepesvári,et al.  Manifold-Adaptive Dimension Estimation , 2007, ICML '07.

[70]  Steven W. Zucker,et al.  Diffusion Maps and Geometric Harmonics for Automatic Target Recognition (ATR). Volume 2. Appendices , 2007 .

[71]  D. Paul ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .

[72]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .

[73]  R. DeVore,et al.  Universal Algorithms for Learning Theory. Part II: Piecewise Polynomial Functions , 2007 .

[74]  Ronald R. Coifman,et al.  Regularization on Graphs with Function-adapted Diffusion Processes , 2008, J. Mach. Learn. Res..

[75]  Guangliang Chen,et al.  Spectral Curvature Clustering (SCC) , 2009, International Journal of Computer Vision.

[76]  Alfred O. Hero,et al.  Variance reduction with neighborhood smoothing for local intrinsic dimension estimation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[77]  Guillermo Sapiro,et al.  Translated Poisson Mixture Model for Stratification Learning , 2008, International Journal of Computer Vision.

[78]  Mauro Maggioni,et al.  Multiscale Estimation of Intrinsic Dimensionality of Data Sets , 2009, AAAI Fall Symposium: Manifold Learning and Its Applications.

[79]  Guillermo Sapiro,et al.  Discriminative k-metrics , 2009, ICML '09.

[80]  Guillermo Sapiro,et al.  Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.

[81]  Guangliang Chen,et al.  Kernel Spectral Curvature Clustering (KSCC) , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[82]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[83]  M. Maggioni,et al.  Estimation of intrinsic dimensionality of samples from noisy low-dimensional manifolds in high dimensions with multiscale SVD , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[84]  Guangliang Chen,et al.  Foundations of a Multi-way Spectral Clustering Framework for Hybrid Linear Modeling , 2008, Found. Comput. Math..

[85]  Guangliang Chen,et al.  Multiscale geometric wavelets for the analysis of point clouds , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[86]  L. Rosasco,et al.  Multiscale Geometric Methods for Estimating Intrinsic Dimension , 2010 .

[87]  David B. Dunson,et al.  Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds , 2010, IEEE Transactions on Signal Processing.

[88]  Guangliang Chen,et al.  Multiscale Geometric Methods for Data Sets II: Geometric Wavelets , 2011, ArXiv.

[89]  C. Chui Adapted Wavelet Analysis from Theory to Software , 2022 .