Some Recent Advances in Multiscale Geometric Analysis of Point Clouds
暂无分享,去创建一个
Lorenzo Rosasco | Guangliang Chen | Mauro Maggioni | Anna V. Little | L. Rosasco | M. Maggioni | Guangliang Chen | A. Little
[1] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[2] P. Grassberger,et al. Measuring the Strangeness of Strange Attractors , 1983 .
[3] Floris Takens,et al. On the numerical determination of the dimension of an attractor , 1985 .
[4] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .
[5] G. David. Morceaux de graphes lipschitziens et integrales singulières sur une surface. , 1988 .
[6] Peter W. Jones. Rectifiable sets and the Traveling Salesman Problem , 1990 .
[7] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[8] S. Semmes,et al. Singular integrals and rectifiable sets in R[n] : au-delà des graphes lipschitziens , 1991 .
[9] G. David. Wavelets and Singular Integrals on Curves and Surfaces , 1991 .
[10] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[11] Charles K. Chui,et al. An Introduction to Wavelets , 1992 .
[12] S. Semmes,et al. Analysis of and on uniformly rectifiable sets , 1993 .
[13] B. Torrésani,et al. Wavelets: Mathematics and Applications , 1994 .
[14] M. Victor Wickerhauser,et al. Adapted wavelet analysis from theory to software , 1994 .
[15] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[16] Patrick J. F. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 2003 .
[17] Jitendra Malik,et al. Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[18] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[19] S. Mallat. A wavelet tour of signal processing , 1998 .
[20] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[21] S. Mallat. VI – Wavelet zoom , 1999 .
[22] R. Burton,et al. Consistency of the Takens estimator for the correlation dimension , 1999 .
[23] Pei-Chen Lo. Three-dimensional filtering approach to brain potential mapping , 1999, IEEE Transactions on Biomedical Engineering.
[24] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[25] S. Semmes,et al. Uniform rectifiability and quasiminimizing sets of arbitrary codimension , 2000 .
[26] V. Koltchinskii. Empirical geometry of multivariate data: a deconvolution approach , 2000 .
[27] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[28] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[29] A. G. Flesia,et al. Can recent innovations in harmonic analysis `explain' key findings in natural image statistics? , 2001, Network.
[30] Mikhail Belkin,et al. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.
[31] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[32] I. Graham,et al. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth , 2001, Journal of mathematical biology.
[33] Jean-Luc Starck,et al. Multiscale geometric analysis for 3D catalogs , 2002, SPIE Astronomical Telescopes + Instrumentation.
[34] Mikhail Belkin,et al. Using manifold structure for partially labelled classification , 2002, NIPS 2002.
[35] D. Donoho,et al. Multiscale Geometric Analysis for 3-D Catalogues , 2002 .
[36] A. Vinciarelli,et al. Estimating the Intrinsic Dimension of Data with a Fractal-Based Method , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[37] Zoubin Ghahramani,et al. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.
[38] Hongyuan Zha,et al. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.
[39] A. ADoefaa,et al. ? ? ? ? f ? ? ? ? ? , 2003 .
[40] D. Donoho,et al. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[41] Mikhail Belkin,et al. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.
[42] D. Donoho,et al. Hessian Eigenmaps : new locally linear embedding techniques for high-dimensional data , 2003 .
[43] Kilian Q. Weinberger,et al. Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.
[44] Alfred O. Hero,et al. Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.
[45] Robert Krauthgamer,et al. Measured Descent: A New Embedding Method for Finite Metrics , 2004, FOCS.
[46] Richard L. Hudson,et al. THE (MIS)BEHAVIOR OF MARKETS , 2004 .
[47] Peter J. Bickel,et al. Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.
[48] Francesco Camastra,et al. Intrinsic Dimension Estimation of Data: An Approach Based on Grassberger–Procaccia's Algorithm , 2001, Neural Processing Letters.
[49] Mikhail Belkin,et al. Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.
[50] Alfred O. Hero,et al. Learning intrinsic dimension and intrinsic entropy of high-dimensional datasets , 2004, 2004 12th European Signal Processing Conference.
[51] Ann B. Lee,et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[52] Michael Elad,et al. K-SVD : DESIGN OF DICTIONARIES FOR SPARSE REPRESENTATION , 2005 .
[53] Yuxiao Hu,et al. Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[54] Wolfgang Dahmen,et al. Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions , 2005, J. Mach. Learn. Res..
[55] Lawrence K. Saul,et al. Analysis and extension of spectral methods for nonlinear dimensionality reduction , 2005, ICML.
[56] Matthias Hein,et al. Intrinsic dimensionality estimation of submanifolds in Rd , 2005, ICML.
[57] Svetlana Lazebnik,et al. Estimation of Intrinsic Dimensionality Using High-Rate Vector Quantization , 2005, NIPS.
[58] Ronald R. Coifman,et al. Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions , 2005, SPIE Optics + Photonics.
[59] Sridhar Mahadevan,et al. Value Function Approximation with Diffusion Wavelets and Laplacian Eigenfunctions , 2005, NIPS.
[60] Richard G. Baraniuk,et al. The multiscale structure of non-differentiable image manifolds , 2005, SPIE Optics + Photonics.
[61] B. Nadler,et al. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.
[62] Matthias Hein,et al. Intrinsic Dimensionality Estimation of Submanifolds in Euclidean space , 2005, ICML 2005.
[63] Tony F. Chan,et al. Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .
[64] Tony F. Chan,et al. Image processing and analysis , 2005 .
[65] Mikhail Belkin,et al. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..
[66] Stéphane Lafon,et al. Diffusion maps , 2006 .
[67] Robert M. Haralick,et al. Nonlinear Manifold Clustering By Dimensionality , 2006, 18th International Conference on Pattern Recognition (ICPR'06).
[68] A. Hero,et al. De-Biasing for Intrinsic Dimension Estimation , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.
[69] Csaba Szepesvári,et al. Manifold-Adaptive Dimension Estimation , 2007, ICML '07.
[70] Steven W. Zucker,et al. Diffusion Maps and Geometric Harmonics for Automatic Target Recognition (ATR). Volume 2. Appendices , 2007 .
[71] D. Paul. ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .
[72] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .
[73] R. DeVore,et al. Universal Algorithms for Learning Theory. Part II: Piecewise Polynomial Functions , 2007 .
[74] Ronald R. Coifman,et al. Regularization on Graphs with Function-adapted Diffusion Processes , 2008, J. Mach. Learn. Res..
[75] Guangliang Chen,et al. Spectral Curvature Clustering (SCC) , 2009, International Journal of Computer Vision.
[76] Alfred O. Hero,et al. Variance reduction with neighborhood smoothing for local intrinsic dimension estimation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[77] Guillermo Sapiro,et al. Translated Poisson Mixture Model for Stratification Learning , 2008, International Journal of Computer Vision.
[78] Mauro Maggioni,et al. Multiscale Estimation of Intrinsic Dimensionality of Data Sets , 2009, AAAI Fall Symposium: Manifold Learning and Its Applications.
[79] Guillermo Sapiro,et al. Discriminative k-metrics , 2009, ICML '09.
[80] Guillermo Sapiro,et al. Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.
[81] Guangliang Chen,et al. Kernel Spectral Curvature Clustering (KSCC) , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.
[82] Guillermo Sapiro,et al. Online dictionary learning for sparse coding , 2009, ICML '09.
[83] M. Maggioni,et al. Estimation of intrinsic dimensionality of samples from noisy low-dimensional manifolds in high dimensions with multiscale SVD , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.
[84] Guangliang Chen,et al. Foundations of a Multi-way Spectral Clustering Framework for Hybrid Linear Modeling , 2008, Found. Comput. Math..
[85] Guangliang Chen,et al. Multiscale geometric wavelets for the analysis of point clouds , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).
[86] L. Rosasco,et al. Multiscale Geometric Methods for Estimating Intrinsic Dimension , 2010 .
[87] David B. Dunson,et al. Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds , 2010, IEEE Transactions on Signal Processing.
[88] Guangliang Chen,et al. Multiscale Geometric Methods for Data Sets II: Geometric Wavelets , 2011, ArXiv.
[89] C. Chui. Adapted Wavelet Analysis from Theory to Software , 2022 .