A study on unfitted 1D finite element methods

In the present paper we consider a 1D Poisson model characterized by the presence of an interface, where a transmission condition arises due to jumps of the coefficients. We aim at studying finite element methods with meshes not fitting such an interface. It is well known that when the mesh does not fit the material discontinuities the resulting scheme provides in general lower order accurate solutions. We focus on so-called embedded approaches, frequently adopted to treat fluid-structure interaction problems, with the aim of recovering higher order of approximation also in presence of non fitting meshes; we implement several methods inspired by: the Immersed Boundary method, the Fictitious Domain method, and the Extended Finite Element method. In particular, we present four formulations in a comprehensive and unified format, proposing several numerical tests and discussing their performance. Moreover, we point out issues that may be encountered in the generalization to higher dimensions and we comment on possible solutions.

[1]  Tod A. Laursen,et al.  On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .

[2]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[3]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.

[4]  Tod A. Laursen,et al.  A Nitsche embedded mesh method , 2012 .

[5]  H. Langtangen,et al.  Mixed Finite Elements , 2003 .

[6]  Jens Markus Melenk,et al.  Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .

[7]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[8]  Erik Burman,et al.  Projection stabilization of Lagrange multipliers for the imposition of constraints on interfaces and boundaries , 2012, 1203.4116.

[9]  Graham F. Carey,et al.  Derivative calculation from finite element solutions , 1982 .

[10]  Roland Glowinski,et al.  A Fictitious-Domain Method with Distributed Multiplier for the Stokes Problem , 2002 .

[11]  Yuri Bazilevs,et al.  Computational fluid mechanics and fluid–structure interaction , 2012 .

[12]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[13]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[14]  Maurice Gevrey Détermination et emploi des fonctions de Green dans les problèmes aux limites relatifs aux équations linéaires du type elliptique , 1930 .

[15]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[16]  R. B. Kellogg,et al.  SINGULARITIES IN INTERFACE PROBLEMS , 1971 .

[17]  Ferdinando Auricchio,et al.  Mixed Finite Element Methods , 2004 .

[18]  Brummelen van Eh,et al.  Flux evaluation in primal and dual boundary-coupled problems , 2011 .

[19]  Gabriel R. Barrenechea,et al.  A local projection stabilized method for fictitious domains , 2012, Appl. Math. Lett..

[20]  Graham F. Carey,et al.  Approximate boundary-flux calculations☆ , 1985 .

[21]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[22]  D. Boffi,et al.  FINITE ELEMENT APPROACH TO IMMERSED BOUNDARY METHOD WITH DIFFERENT FLUID AND SOLID DENSITIES , 2011 .

[23]  R. Glowinski,et al.  Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .

[24]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .

[25]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[26]  J. Dolbow,et al.  Robust imposition of Dirichlet boundary conditions on embedded surfaces , 2012 .

[27]  Gangan Prathap,et al.  A comment on “Accuracy of some finite element models for arch problems” by: F. Kikuchi [Comput. Meths. Appl. Mech. Engrg. 35 (1982) 315–345] , 1984 .

[28]  Bertrand Maury,et al.  A Fat Boundary Method for the Poisson Problem in a Domain with Holes , 2002, J. Sci. Comput..

[29]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[30]  Benoit Fabrèges Une méthode de prolongement régulier pour la simulation d'écoulements fluide/particules , 2012 .

[31]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[32]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[33]  Spencer J. Sherwin,et al.  A comparison of fictitious domain methods appropriate for spectral/hp element discretisations , 2008 .

[34]  C. M. Elliott,et al.  Fitted and Unfitted Finite-Element Methods for Elliptic Equations with Smooth Interfaces , 1987 .

[35]  F. Auricchio,et al.  On a fictitious domain method with distributed Lagrange multiplier for interface problems , 2015 .

[36]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[37]  Maher Moakher,et al.  A local projection stabilization of fictitious domain method for elliptic boundary value problems , 2014 .

[38]  Ernst Rank,et al.  Finite cell method , 2007 .

[39]  Silvia Bertoluzza,et al.  Analysis of the fully discrete fat boundary method , 2011, Numerische Mathematik.

[40]  L. Heltai,et al.  On the hyper-elastic formulation of the immersed boundary method , 2008 .