Design and implementation of an innovative quadratic Gaussian control system for laser surface treatments

This article presents an innovative real-time quadratic Gaussian control system developed specifically for laser surface treatments, analysing the specific issues related to its design and physical implementation. Due to its own nature, the proposed controller optimises the amount of energy deposited by the laser source, inducing a lower thermalisation of the treated element, limiting as well the overshooting and consequently the risk of surface degradation, improving significantly the uniformity and final quality of the process, reducing the rejection rate and increasing the productivity and efficiency of the treatment.

[1]  Xavier Olive,et al.  Industrial applications , 2007 .

[2]  William S. Levine,et al.  The Control Handbook , 2005 .

[3]  G. Chryssolouris Laser Machining: Theory and Practice , 1991 .

[4]  Javier Cuadrado,et al.  Automotive observers based on multibody models and the extended Kalman filter , 2010 .

[5]  J. Mazumder,et al.  Laser material processing: Fourth edition , 2010 .

[6]  J. M. Amado,et al.  Modelización y monitorización de procesos de refusión láser de recubrimientos depositados por plasma , 2004 .

[7]  Konstantinos Salonitis,et al.  Thermal analysis of grind-hardening process , 2007, Int. J. Manuf. Technol. Manag..

[8]  Jordi Andreu,et al.  New techniques for laser microprocessing of photovoltaic devices based on thin-film a-Si:H , 2007 .

[9]  José Antonio Pérez,et al.  Hybrid fuzzy logic control of laser surface heat treatments , 2007 .

[10]  Lakhmi C. Jain,et al.  Intelligent Adaptive Control: Industrial Applications , 1998 .

[11]  José Antonio Pérez,et al.  Design of an advanced incremental fuzzy logic controller for laser surface heat treatments , 2008 .

[12]  Frank Vollertsen,et al.  State of the art of Laser Hardening and Cladding , 2005 .

[13]  Alberto Ramil,et al.  Modelling of temperature evolution on metals during laser hardening process , 2002 .

[14]  José Antonio Pérez,et al.  Adaptive neural network control system for laser surface heat treatments , 2008 .

[15]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[16]  Bernardus Engelina Römer Gerardus Richardus,et al.  Process control of laser surface alloying , 1998 .

[17]  W. Steen Laser Material Processing , 1991 .

[18]  Shiuh-Jer Huang,et al.  Fuzzy Logic Control for the Ti6A14V Laser Alloying Process , 2001 .

[19]  José Antonio Pérez,et al.  Adaptive neurofuzzy ANFIS modeling of laser surface treatments , 2010, Neural Computing and Applications.

[20]  J. M. Amado,et al.  Modelización de las transformaciones de fase en el proceso de endurecimiento de aceros con láser de CO2 , 2004 .

[21]  José A. Orosa,et al.  Neural modeling of laser surface treatments , 2010 .