A topological horseshoe in a fractional-order Qi four-wing chaotic system

A fractional-order Qi four-wing chaotic system is present based on the Grunwald-Letnikov denition. The existence of topological horseshoe in a fractional chaotic system is analyzed by utilizing topological horseshoe theory. A Poincare section is properly chosen to obtain the Poincare map which is proved to be semi-conjugate to a 2-shift map, implying that the fractional-order Qi four-wing chaotic system exhibits chaos.

[1]  Qingdu Li,et al.  A computer-assisted proof of chaos in Josephson junctions , 2006 .

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[4]  Qingdu Li,et al.  Horseshoe chaos in a class of simple Hopfield neural networks , 2009 .

[5]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[6]  Barend Jacobus van Wyk,et al.  A four-wing attractor and its analysis , 2009 .

[7]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[8]  L. Chua,et al.  The double scroll family , 1986 .

[9]  Zhuzhi Yuan,et al.  A computer-assisted proof for the existence of horseshoe in a novel chaotic system , 2009 .

[10]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[11]  Xiao-Song Yang,et al.  A new proof for existence of horseshoe in the Rössler system , 2003 .

[12]  Guanrong Chen,et al.  A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system , 2008 .

[13]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[14]  Xiao-Song Yang,et al.  Existence of Horseshoe in a Foodweb Model , 2004, Int. J. Bifurc. Chaos.

[15]  Xiao-Song Yang,et al.  Horseshoes in modified Chen’s attractors , 2005 .

[16]  Xiao-Song Yang,et al.  A planar topological horseshoe theory with applications to computer verifications of chaos , 2005 .

[17]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[18]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[19]  Hongyan Jia,et al.  Topological horseshoe analysis and circuit realization for a fractional-order Lü system , 2013 .

[20]  P. Butzer,et al.  AN INTRODUCTION TO FRACTIONAL CALCULUS , 2000 .

[21]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[22]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[23]  L. Dorcak Numerical Models for the Simulation of the Fractional-Order Control Systems , 2002 .

[24]  Hongyan Jia,et al.  Topological horseshoe analysis and the circuit implementation for a four-wing chaotic attractor , 2011 .