A Parallel Multistage ILU Factorization Based on a Hierarchical Graph Decomposition

PHIDAL (parallel hierarchical interface decomposition algorithm) is a parallel incomplete factorization method which exploits a hierarchical interface decomposition of the adjacency graph of the coefficient matrix. The idea of the decomposition is similar to that of the well-known wirebasket techniques used in domain decomposition. However, the method is devised for general, irregularly structured, sparse linear systems. This paper describes a few algorithms for obtaining good quality hierarchical graph decompositions and discusses the parallel implementation of the factorization procedure. Numerical experiments are reported to illustrate the scalability of the algorithm and its effectiveness as a general purpose parallel linear system solver.

[1]  Yousef Saad,et al.  Variations on algebraic recursive multilevel solvers (ARMS) for the solution of CFD problems , 2004 .

[2]  Henk A. van der Vorst,et al.  Parallel incomplete factorizations with pseudo-overlapped subdomains , 2001, Parallel Comput..

[3]  Barry F. Smith,et al.  Domain decomposition algorithms for the partial differential equations of linear elasticity , 1990 .

[4]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[5]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[6]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[7]  Henk A. van der Vorst,et al.  A generalized domain decomposition paradigm for parallel incomplete LU factorization preconditionings , 2001, Future Gener. Comput. Syst..

[8]  Henk A. van der Vorst,et al.  Spectral analysis of parallel incomplete factorizations with implicit pseudo‐overlap , 2002, Numer. Linear Algebra Appl..

[9]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[10]  E. F. F. Botta,et al.  Matrix Renumbering ILU: An Effective Algebraic Multilevel ILU Preconditioner for Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[11]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[12]  Masha Sosonkina,et al.  pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..

[13]  O. Axelsson Iterative solution methods , 1995 .

[14]  Yousef Saad,et al.  ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices , 1996, SIAM J. Sci. Comput..

[15]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[16]  Christian Wagner,et al.  Multilevel ILU decomposition , 1999, Numerische Mathematik.

[17]  Yousef Saad,et al.  Enhanced GMRES Acceleration Techniques for some CFD Problems , 2002 .

[18]  Alex Pothen,et al.  A Scalable Parallel Algorithm for Incomplete Factor Preconditioning , 2000, SIAM J. Sci. Comput..