Chromatin accessibility plays a key role in selective targeting of Hox proteins

[1]  Johan Larsson Area-Proportional Euler and Venn Diagrams with Ellipses [R package eulerr version 6.1.0] , 2020 .

[2]  S. Russell,et al.  Chromatin accessibility plays a key role in selective targeting of Hox proteins , 2018, Genome Biology.

[3]  Pierre B. Cattenoz,et al.  Embryonic hematopoiesis modulates the inflammatory response and larval hematopoiesis in Drosophila , 2018, eLife.

[4]  M. Duffraisse,et al.  Human HOX Proteins Use Diverse and Context-Dependent Motifs to Interact with TALE Class Cofactors. , 2018, Cell reports.

[5]  Johan Larsson,et al.  eulerr: Area-Proportional Euler Diagrams with Ellipses , 2018 .

[6]  S. Levine,et al.  The Hox proteins Ubx and AbdA collaborate with the transcription pausing factor M1BP to regulate gene transcription , 2017, The EMBO journal.

[7]  A. Hau,et al.  MEIS homeodomain proteins facilitate PARP1/ARTD1-mediated eviction of histone H1 , 2017, The Journal of cell biology.

[8]  Eric F Wieschaus,et al.  Concentration dependent chromatin states induced by the bicoid morphogen gradient , 2017, bioRxiv.

[9]  Aaron T. L. Lun,et al.  csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows , 2015, Nucleic acids research.

[10]  Oliver Bembom,et al.  Sequence logos for DNA sequence alignments , 2016 .

[11]  S. Russell,et al.  Roles of cofactors and chromatin accessibility in Hox protein target specificity , 2016, Epigenetics & Chromatin.

[12]  P. Provero,et al.  Total Binding Affinity Profiles of Regulatory Regions Predict Transcription Factor Binding and Gene Expression in Human Cells , 2015, PloS one.

[13]  C. Brun,et al.  Inhibitory activities of short linear motifs underlie Hox interactome specificity in vivo , 2015, eLife.

[14]  R. Mann,et al.  Deconvolving the Recognition of DNA Shape from Sequence , 2015, Cell.

[15]  Y. Graba,et al.  Cellular and molecular insights into Hox protein action , 2015, Development.

[16]  M. Rattray,et al.  Hoxa2 Selectively Enhances Meis Binding to Change a Branchial Arch Ground State , 2015, Developmental cell.

[17]  R. Vincentelli,et al.  A flexible extension of the Drosophila ultrabithorax homeodomain defines a novel Hox/PBC interaction mode. , 2015, Structure.

[18]  R. Mann,et al.  Low Affinity Binding Site Clusters Confer Hox Specificity and Regulatory Robustness , 2015, Cell.

[19]  Howard Y. Chang,et al.  ATAC‐seq: A Method for Assaying Chromatin Accessibility Genome‐Wide , 2015, Current protocols in molecular biology.

[20]  Martin H. Schaefer,et al.  The cis‐regulatory code of Hox function in Drosophila , 2015, The EMBO journal.

[21]  Elena Grassi Obtain total affinity and occupancies for binding site matrices on a given sequence , 2015 .

[22]  S. Choe,et al.  TALE factors poise promoters for activation by Hox proteins. , 2014, Developmental cell.

[23]  M. Torres,et al.  Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates , 2013, Developmental dynamics : an official publication of the American Association of Anatomists.

[24]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[25]  Y. Graba,et al.  Antagonism Versus Cooperativity with TALE Cofactors at the Base of the Functional Diversification of Hox Protein Function , 2013, PLoS genetics.

[26]  Juan M. Vaquerizas,et al.  DNA-Binding Specificities of Human Transcription Factors , 2013, Cell.

[27]  Martin H. Schaefer,et al.  The cis‐regulatory code of Hox function in Drosophila , 2012, The EMBO journal.

[28]  R. Mann,et al.  Cofactor Binding Evokes Latent Differences in DNA Binding Specificity between Hox Proteins , 2011, Cell.

[29]  M. Biggin Animal transcription networks as highly connected, quantitative continua. , 2011, Developmental cell.

[30]  J. Stamatoyannopoulos,et al.  The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding , 2011, Genome Biology.

[31]  Eric F. Wieschaus,et al.  The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA , 2011, PLoS biology.

[32]  J. Stamatoyannopoulos,et al.  Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development , 2011, PLoS genetics.

[33]  Li Yang,et al.  The transcriptional diversity of 25 Drosophila cell lines. , 2011, Genome research.

[34]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[35]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[36]  Daniel E. Newburger,et al.  Diversity and Complexity in DNA Recognition by Transcription Factors , 2009, Science.

[37]  R. Mann,et al.  Chapter 3 Hox Specificity , 2009 .

[38]  R. Mann,et al.  Hox specificity unique roles for cofactors and collaborators. , 2009, Current topics in developmental biology.

[39]  Urs Kloter,et al.  Evolution of the Hox gene complex from an evolutionary ground state. , 2009, Current topics in developmental biology.

[40]  I. Lohmann,et al.  Shaping segments: Hox gene function in the genomic age , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  G. Stormo,et al.  Analysis of Homeodomain Specificities Allows the Family-wide Prediction of Preferred Recognition Sites , 2008, Cell.

[42]  Oliver Bembom,et al.  seqLogo: An R package for plotting DNA sequence logos. , 2007 .

[43]  Alexandre V. Morozov,et al.  Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE , 2006, ISMB.

[44]  Joseph C. Pearson,et al.  Modulating Hox gene functions during animal body patterning , 2005, Nature Reviews Genetics.

[45]  A. Holder,et al.  Antibody-based therapies for malaria , 2005, Nature Reviews Microbiology.

[46]  S. Tapscott,et al.  Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. , 2004, Molecular cell.

[47]  S. Carroll,et al.  Hox repression of a target gene: extradenticle-independent, additive action through multiple monomer binding sites. , 2002, Development.

[48]  T Marty,et al.  Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex. , 1999, Development.

[49]  Michael L. Cleary,et al.  Trimeric Association of Hox and TALE Homeodomain Proteins Mediates Hoxb2 Hindbrain Enhancer Activity , 1999, Molecular and Cellular Biology.

[50]  L. Kömüves,et al.  HOXA9 Forms Triple Complexes with PBX2 and MEIS1 in Myeloid Cells , 1999, Molecular and Cellular Biology.

[51]  A. Giangrande,et al.  glide/gcm is expressed and required in the scavenger cell lineage. , 1997, Developmental biology.

[52]  P. Knoepfler,et al.  The pentapeptide motif of Hox proteins is required for cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by Pbx1 , 1995, Molecular and cellular biology.

[53]  C. Murre,et al.  The hexapeptide LFPWMR in Hoxb-8 is required for cooperative DNA binding with Pbx1 and Pbx2 proteins. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[54]  I. Rambaldi,et al.  Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif , 1995, Molecular and cellular biology.

[55]  M. Cleary,et al.  Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. , 1995, Genes & development.

[56]  G. Morata,et al.  Colinearity and functional hierarchy among genes of the homeotic complexes. , 1994, Trends in genetics : TIG.

[57]  C. Murre,et al.  extradenticle Raises the DNA binding specificity of homeotic selector gene products , 1994, Cell.

[58]  Juan Botas,et al.  The DNA binding specificity of ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein , 1994, Cell.

[59]  M. Biggin,et al.  Two homeo domain proteins bind with similar specificity to a wide range of DNA sites in Drosophila embryos. , 1994, Genes & development.

[60]  S. Ekker,et al.  Cooperative binding of an Ultrabithorax homeodomain protein to nearby and distant DNA sites , 1993, Molecular and cellular biology.

[61]  G. Morata,et al.  The developmental effect of overexpressing a Ubx product in Drosophila embryos is dependent on its interactions with other homeotic products , 1990, Cell.

[62]  G. Morata,et al.  Are cross-regulatory interactions between homoeotic genes functionally significant? , 1990, Nature.

[63]  P. O’Farrell,et al.  The sequence specificity of homeodomain-DNA interaction , 1988, Cell.

[64]  H. Krause,et al.  Expression, modification, and localization of the fushi tarazu protein in Drosophila embryos. , 1988, Genes & development.

[65]  Robert A. H. White,et al.  Regulation of the Ultrabithorax gene of drosophila by other bithorax complex genes , 1985, Cell.

[66]  E. Hafen,et al.  Regulation of Antennapedia transcript distribution by the bithorax complex in Drosophila , 1984, Nature.

[67]  G. Struhl Role of the esc+ gene product in ensuring the selective expression of segment-specific homeotic genes in Drosophila. , 1983, Journal of embryology and experimental morphology.

[68]  E. Lewis A gene complex controlling segmentation in Drosophila , 1978, Nature.