Statistical multiscale homogenization approach for analyzing polymer nanocomposites that include model inherent uncertainties of molecular dynamics simulations

Abstract A statistical multiscale homogenization strategy of polymer nanocomposites is proposed to account for the inherent uncertainties of molecular dynamics (MD) simulations. The proposed statistical multiscale homogenization scheme includes a discrete MD simulation system, a continuum theory of micromechanics of Eshelby's solution and two-scale homogenization, and Monte-Carlo simulations. The means and standard deviations of the elastic properties of the nanocomposites are quantified and discussed through statistical analyses that show the interphase effect. The elastic properties of the matrix, interphase, and composites are assumed to follow a lognormal distribution. An iterative inverse algorithm for obtaining the probability density distribution of the interphase is proposed and validated.

[1]  Michel Quintard,et al.  Volume averaging for determining the effective dispersion tensor: Closure using periodic unit cells and comparison with ensemble averaging , 2003 .

[2]  Gregory M. Odegard,et al.  MODELING TECHNIQUES FOR DETERMINATION OF MECHANICAL PROPERTIES OF POLYMER NANOCOMPOSITES , 2005 .

[3]  M. Cho,et al.  Multiscale modeling of size-dependent elastic properties of carbon nanotube/ polymer nanocomposites with interfacial imperfections , 2012 .

[4]  T. Rabczuk,et al.  Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs) , 2014 .

[5]  Sia Nemat-Nasser,et al.  Double-inclusion model and overall moduli of multi-phase composites , 1994 .

[6]  M. Cho,et al.  A study on the prediction of the mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept , 2011 .

[7]  M. Quaresimin,et al.  Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: A multiscale analytical model , 2013 .

[8]  Analysis of thermal conductivity of polymeric nanocomposites under mechanical loading , 2013 .

[9]  M. Cho,et al.  Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites , 2008 .

[10]  T. Rabczuk,et al.  Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters , 2015 .

[11]  Yalin Yu,et al.  Stress transfer analysis of unidirectional composites with randomly distributed fibers using finite element method , 2015 .

[12]  Kyeongjae Cho,et al.  Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites , 2002, cond-mat/0203349.

[13]  P. Sozzani,et al.  Polymer/silica nanocomposite micro-objects as a key point for silica-to-polymer shape replication , 2008 .

[14]  M. Cho,et al.  A scale-bridging method for nanoparticulate polymer nanocomposites and their nondilute concentration effect , 2009 .

[15]  A. Yu,et al.  Multiscale modeling and simulation of polymer nanocomposites , 2008 .

[16]  D. W. Scott Averaged Shifted Histograms: Effective Nonparametric Density Estimators in Several Dimensions , 1985 .

[17]  M. Cho,et al.  Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites , 2015 .

[18]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[19]  G. Odegard,et al.  Predicting mechanical response of crosslinked epoxy using ReaxFF , 2014 .

[20]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[21]  M. Cho,et al.  Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: A multiscale approach , 2015 .

[22]  M. Cho,et al.  Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance , 2013 .

[23]  M. Cho,et al.  Multi-scale modeling of cross-linked epoxy nanocomposites , 2009 .

[24]  C. Redenbach,et al.  Statistical analysis and stochastic modelling of fibre composites , 2011 .

[25]  M. Cho,et al.  The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: A multiscale approach , 2015 .

[26]  A. Haque,et al.  Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties , 2013 .

[27]  M. Cho,et al.  Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study. , 2012, ACS applied materials & interfaces.

[28]  Matthew Ming Fai Yuen,et al.  Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation , 2007 .

[29]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[30]  M. Cho,et al.  Method of scale bridging for thermoelasticity of cross-linked epoxy/SiC nanocomposites at a wide range of temperatures , 2012 .

[31]  M. Cho,et al.  Multiscale homogenization model for thermoelastic behavior of epoxy-based composites with polydisperse SiC nanoparticles , 2015 .

[32]  Aditi Chattopadhyay,et al.  Atomistically informed stochastic multiscale model to predict the behavior of carbon nanotube-enhanced nanocomposites , 2015 .

[33]  M. Parrinello,et al.  Strain fluctuations and elastic constants , 1982 .

[34]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[35]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[36]  Mojia Huang,et al.  Erratum to: A Simple Explicit Formula for the Voigt-Reuss-Hill Average of Elastic Polycrystals with Arbitrary Crystal and Texture Symmetries , 2011 .

[37]  T. Rabczuk,et al.  Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations , 2014 .

[38]  M. Quaresimin,et al.  A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids , 2012 .