Parallel Strategies for Computing the Orthogonal Factorizations Used in the Estimation of Econometric Models

Abstract. Parallel strategies based on compound disjoint Givens rotations are proposed for computing the main two factorizations that are used in the solution of seemingly unrelated regression and simultaneous equations models. The first factorization requires the triangularization of a set of upper-trapezoidals after deleting columns. The second factorization is equivalent to updating a lower-triangular matrix with a matrix having a block lower-triangular structure. Theoretical measures of complexity and examples are used for comparing and investigating the various parallel strategies.

[1]  C. Loan,et al.  A Storage-Efficient $WY$ Representation for Products of Householder Transformations , 1989 .

[2]  Erricos John Kontoghiorghes,et al.  New Parallel Strategies for Block Updating the Qr Decomposition , 1995, Parallel Algorithms Appl..

[3]  Michel Cosnard,et al.  Optimal algorithms for parallel Givens factorization on a coarse-grained PRAM , 1994, JACM.

[4]  David J. Kuck,et al.  On Stable Parallel Linear System Solvers , 1978, JACM.

[5]  E. J. Kontoghiorghes,et al.  Stable parallel algorithms for computing and updating the QR decomposition , 1993, Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation.

[6]  E. Kontoghiorghes,et al.  Computing 3SLS Solutions of Simultaneous Equation Models with a Possible Singular Variance–Convariance Matrix , 1997 .

[7]  Jagdish J. Modi,et al.  Parallel algorithms and matrix computation , 1988 .

[8]  Leslie G. Valiant,et al.  A bridging model for parallel computation , 1990, CACM.

[9]  Jack J. Dongarra,et al.  A proposal for a set of level 3 basic linear algebra subprograms , 1987, SGNM.

[10]  H. Theil,et al.  Three-Stage Least Squares: Simultaneous Estimation of Simultaneous Equations , 1962 .

[11]  Elias Dinenis,et al.  Solving Triangular Seemingly Unrelated Regression Equations Models on Massively Parallel Systems , 1996 .

[12]  Erricos John Kontoghiorghes,et al.  Solving the Updated and Downdated Ordinary Linear Model on Massively Parallel Simd Systems , 1993, Parallel Algorithms Appl..

[13]  Warren Dent Information and computation in simultaneous equations estimation , 1976 .

[14]  L. S. Jennings,et al.  Simultaneous equations estimation: Computational aspects , 1980 .

[15]  H. Theil Principles of econometrics , 1971 .

[16]  Franklin T. Luk,et al.  A Rotation Method for Computing the QR-Decomposition , 1986 .

[17]  David J. Evans,et al.  A Systolic Array Architecture for QR Decomposition of Block Structured Sparse Systems , 1994, Parallel Comput..

[18]  M. Cosnard,et al.  Parallel QR decomposition of a rectangular matrix , 1986 .

[19]  David A. Belsley Paring 3SLS calculations down to manageable proportions , 1992 .

[20]  Maurice Clint,et al.  Parallel Strategies for Estimating the Parameters of a Modified Regression Model on a SIMD Array Processor , 1996 .

[21]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[22]  Ramesh Subramonian,et al.  LogP: a practical model of parallel computation , 1996, CACM.

[23]  Erricos John Kontoghiorghes,et al.  Solving the General Linear Model on a SIMD Array Processor , 1995, Comput. Artif. Intell..

[24]  J. J. Modi,et al.  An alternative givens ordering , 1984 .

[25]  Erricos John Kontoghiorghes,et al.  Parallel Reorthogonalization of the QR Decomposition After Deleting Columns , 1993, Parallel Comput..

[26]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[27]  Erricos John Kontoghiorghes Parallel Strategies for Solving SURE Models with Variance Inequalities and Positivity of Correlations Constraints , 2000 .

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  Marc Moonen,et al.  On the QR algorithm and updating the SVD and the URV decomposition in parallel , 1993 .

[30]  Haesun Park,et al.  Block Downdating of Least Squares Solutions , 1994 .

[31]  R. Narayanan Computation of Zellner-Theil's Three Stage Least Squares Estimates , 1969 .

[32]  Erricos John Kontoghiorghes,et al.  An alternative approach for the numerical solution of seemingly unrelated regression equations models , 1995 .

[33]  Christian H. Bischof,et al.  A Cholesky Up- and Downdating Algorithm for Systolic and SIMD Architectures , 1993, SIAM J. Sci. Comput..

[34]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[35]  Franklin T. Luk,et al.  On parallel Jacobi orderings , 1989 .