Polygenicity and Epistasis Underlie Fitness-Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) Panel

Using a new experimentally evolved multiparent mapping resource for C. elegans, Noble et al. have outlined the genetic architecture of worm fertility.. Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity, and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here, we report an advanced recombinant inbred line (RIL) quantitative trait locus mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140–190 generations, and inbreeding by selfing for 13–16 generations. The panel contains 22% of single-nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across > 95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad-sense heritability in the CeMEE. While simulations show that we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits do not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor (r2<10%), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms.

[1]  D. Balding,et al.  Relatedness in the post-genomic era: is it still useful? , 2014, Nature Reviews Genetics.

[2]  T. Mackay,et al.  Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster , 2015, eLife.

[3]  L. B. Snoek,et al.  A genome-wide library of CB4856/N2 introgression lines of Caenorhabditis elegans , 2009, Nucleic acids research.

[4]  Jack P. Hayes,et al.  Individual Variation in Mammals , 1997 .

[5]  Leonid Kruglyak,et al.  Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity , 2011, Nature Genetics.

[6]  I. Chelo,et al.  Evolution of Outcrossing in Experimental Populations of Caenorhabditis elegans , 2012, PloS one.

[7]  M. Klass,et al.  Development of the reproductive system of Caenorhabditis elegans. , 1976, Developmental biology.

[8]  D. Houle,et al.  Linkage Disequilibrium and Inversion-Typing of the Drosophila melanogaster Genome Reference Panel , 2015, G3: Genes, Genomes, Genetics.

[9]  I. Theologidis,et al.  Reproductive assurance drives transitions to self-fertilization in experimental Caenorhabditis elegans , 2014, BMC Biology.

[10]  L. Hurst Epistasis and the Evolutionary Process , 2000, Heredity.

[11]  A. Cutter,et al.  Mainstreaming Caenorhabditis elegans in experimental evolution , 2014, Proceedings of the Royal Society B: Biological Sciences.

[12]  Andrew W George,et al.  A multiparent advanced generation inter-cross population for genetic analysis in wheat. , 2012, Plant biotechnology journal.

[13]  M. Whitlock,et al.  MULTIPLE FITNESS PEAKS AND EPISTASIS , 1995 .

[14]  N. Barton,et al.  Multifactorial genetics: Understanding quantitative genetic variation , 2002, Nature Reviews Genetics.

[15]  Isabel Gordo,et al.  An experimental test on the probability of extinction of new genetic variants , 2013, Nature Communications.

[16]  Michael R. Johnson,et al.  Re-evaluation of SNP heritability in complex human traits , 2016, Nature Genetics.

[17]  Leonid Kruglyak,et al.  More Than the Sum of Its Parts: A Complex Epistatic Network Underlies Natural Variation in Thermal Preference Behavior in Caenorhabditis elegans , 2012, Genetics.

[18]  P. Wittkopp,et al.  Contrasting Properties of Gene-Specific Regulatory, Coding, and Copy Number Mutations in Saccharomyces cerevisiae: Frequency, Effects, and Dominance , 2012, PLoS genetics.

[19]  Patrick C Phillips,et al.  Outcrossing and the maintenance of males within C. elegans populations. , 2010, The Journal of heredity.

[20]  W. G. Hill,et al.  Data and Theory Point to Mainly Additive Genetic Variance for Complex Traits , 2008, PLoS genetics.

[21]  M. Lynch,et al.  Spontaneous Mutational Correlations for Life-History, Morphological and Behavioral Characters in Caenorhabditis elegans , 2005, Genetics.

[22]  Xiang Zhou,et al.  Detecting Epistasis in Genome-wide Association Studies with the Marginal EPIstasis Test , 2016 .

[23]  Naomi R. Wray,et al.  Statistical Power to Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples , 2014, PLoS genetics.

[24]  Rex A. Kerr,et al.  High-Throughput Behavioral Analysis in C. elegans , 2011, Nature Methods.

[25]  P. Phillips,et al.  Selection and maintenance of androdioecy in Caenorhabditis elegans. , 2002, Genetics.

[26]  P. Phillips,et al.  Mutation load and rapid adaptation favour outcrossing over self-fertilization , 2009, Nature.

[27]  T. F. Hansen WHY EPISTASIS IS IMPORTANT FOR SELECTION AND ADAPTATION , 2013, Evolution; international journal of organic evolution.

[28]  R. Mott,et al.  A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana , 2009, PLoS genetics.

[29]  M. McMullen,et al.  Genetic Properties of the Maize Nested Association Mapping Population , 2009, Science.

[30]  M. Whitlock,et al.  FACTORS AFFECTING THE GENETIC LOAD IN DROSOPHILA: SYNERGISTIC EPISTASIS AND CORRELATIONS AMONG FITNESS COMPONENTS , 2000, Evolution; international journal of organic evolution.

[31]  Brynn H Voy,et al.  Genetic analysis in the Collaborative Cross breeding population. , 2011, Genome research.

[32]  Evan Z. Macosko,et al.  Balancing selection shapes density-dependent foraging behavior , 2016, Nature.

[33]  Karl W Broman,et al.  Genetic dissection of a model complex trait using the Drosophila Synthetic Population Resource. , 2012, Genome research.

[34]  L. B. Snoek,et al.  The laboratory domestication of Caenorhabditis elegans. , 2015, Trends in genetics : TIG.

[35]  M. Rockman THE QTN PROGRAM AND THE ALLELES THAT MATTER FOR EVOLUTION: ALL THAT'S GOLD DOES NOT GLITTER , 2012, Evolution; international journal of organic evolution.

[36]  W. G. Hill Rates of change in quantitative traits from fixation of new mutations. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Jochen C Reif,et al.  Modeling Epistasis in Genomic Selection , 2015, Genetics.

[38]  M. Rockman,et al.  Crossover Heterogeneity in the Absence of Hotspots in Caenorhabditis elegans , 2013, Genetics.

[39]  F. Balloux,et al.  Discriminant analysis of principal components: a new method for the analysis of genetically structured populations , 2010, BMC Genetics.

[40]  Tyler C. Shimko,et al.  A Powerful New Quantitative Genetics Platform, Combining Caenorhabditis elegans High-Throughput Fitness Assays with a Large Collection of Recombinant Strains , 2015, G3: Genes, Genomes, Genetics.

[41]  A. Long,et al.  Fine-Mapping Nicotine Resistance Loci in Drosophila Using a Multiparent Advanced Generation Inter-Cross Population , 2014, Genetics.

[42]  M. Félix,et al.  Natural variation and population genetics of Caenorhabditis elegans. , 2005, WormBook : the online review of C. elegans biology.

[43]  A. Cutter Nucleotide Polymorphism and Linkage Disequilibrium in Wild Populations of the Partial Selfer Caenorhabditis elegans , 2006, Genetics.

[44]  Robert B. Heckendorn,et al.  Should evolutionary geneticists worry about higher-order , 2013 .

[45]  Cori Bargmann,et al.  Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans , 1998, Cell.

[46]  A. Cutter SPERM‐LIMITED FECUNDITY IN NEMATODES: HOW MANY SPERM ARE ENOUGH? , 2004, Evolution; international journal of organic evolution.

[47]  H. P. O T T O M I C H A E,et al.  Beyond the Average , 2022 .

[48]  D. J. Kiviet,et al.  Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. , 2011, Journal of theoretical biology.

[49]  J. Krug,et al.  Diminishing-returns epistasis among random beneficial mutations in a multicellular fungus , 2016, Proceedings of the Royal Society B: Biological Sciences.

[50]  C. Baer Quantifying the Decanalizing Effects of Spontaneous Mutations in Rhabditid Nematodes , 2008, The American Naturalist.

[51]  Cristel G. Thomas,et al.  Detecting heterozygosity in shotgun genome assemblies: Lessons from obligately outcrossing nematodes. , 2008, Genome research.

[52]  R. B. Azevedo,et al.  npr-1 Regulates Foraging and Dispersal Strategies in Caenorhabditis elegans , 2008, Current Biology.

[53]  M. Goddard,et al.  Prediction of total genetic value using genome-wide dense marker maps. , 2001, Genetics.

[54]  M. Chalfie,et al.  A Transparent Window into Biology: A Primer on Caenorhabditis elegans , 2015, Genetics.

[55]  A. Long,et al.  Genetic Dissection of the Drosophila melanogaster Female Head Transcriptome Reveals Widespread Allelic Heterogeneity , 2014, PLoS genetics.

[56]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[57]  Shizhong Xu,et al.  Whole-Genome Quantitative Trait Locus Mapping Reveals Major Role of Epistasis on Yield of Rice , 2014, PloS one.

[58]  T. Mackay,et al.  Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior , 2012, Proceedings of the National Academy of Sciences.

[59]  A. Long,et al.  Dissecting complex traits using the Drosophila Synthetic Population Resource. , 2014, Trends in genetics : TIG.

[60]  J. Hermisson,et al.  Catch Me if You Can: Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum , 2015, Genetics.

[61]  A. Long,et al.  Identifying Loci Contributing to Natural Variation in Xenobiotic Resistance in Drosophila , 2015, PLoS genetics.

[62]  James Cockram,et al.  An Eight-Parent Multiparent Advanced Generation Inter-Cross Population for Winter-Sown Wheat: Creation, Properties, and Validation , 2014, G3: Genes, Genomes, Genetics.

[63]  Gary A. Churchill,et al.  Ten Years of the Collaborative Cross , 2012, G3: Genes | Genomes | Genetics.

[64]  Peter J. Campbell,et al.  C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency , 2014, Genome research.

[65]  M. Lynch,et al.  Comparative evolutionary genetics of spontaneous mutations affecting fitness in rhabditid nematodes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Daniel E. Cook,et al.  CeNDR, the Caenorhabditis elegans natural diversity resource , 2016, Nucleic Acids Res..

[67]  W. G. Hill,et al.  Genome partitioning of genetic variation for complex traits using common SNPs , 2011, Nature Genetics.

[68]  M. Félix,et al.  Temporal Dynamics and Linkage Disequilibrium in Natural Caenorhabditis elegans Populations , 2007, Genetics.

[69]  Daniel E. Cook,et al.  The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length , 2016, Genetics.

[70]  Thibaut Jombart,et al.  adegenet: a R package for the multivariate analysis of genetic markers , 2008, Bioinform..

[71]  L. Kruglyak,et al.  Widespread Genetic Incompatibility in C. Elegans Maintained by Balancing Selection , 2008, Science.

[72]  C. Petropoulos,et al.  Evidence for Positive Epistasis in HIV-1 , 2004, Science.

[73]  Peter J. Bradbury,et al.  The Genetic Architecture of Maize Flowering Time , 2009, Science.

[74]  J. Cheverud,et al.  Epistasis and its contribution to genetic variance components. , 1995, Genetics.

[75]  Annie E. Hill,et al.  Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis , 2008, Proceedings of the National Academy of Sciences.

[76]  Nengjun Yi,et al.  The Collaborative Cross, a community resource for the genetic analysis of complex traits , 2004, Nature Genetics.

[77]  H. Schulenburg,et al.  Sex differences in host defence interfere with parasite-mediated selection for outcrossing during host–parasite coevolution , 2013, Ecology letters.

[78]  M. Viney,et al.  Genotypic-specific variance in Caenorhabditis elegans lifetime fecundity , 2014, Ecology and evolution.

[79]  A. Vielle,et al.  Complex heterochrony underlies the evolution of Caenorhabditis elegans hermaphrodite sex allocation , 2016, Evolution; international journal of organic evolution.

[80]  B. Shraiman,et al.  Competition between recombination and epistasis can cause a transition from allele to genotype selection , 2009, Proceedings of the National Academy of Sciences.

[81]  G. Covarrubias-Pazaran Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer , 2016, PloS one.

[82]  O. Loudet,et al.  Quantitative Trait Loci Mapping in Five New Large Recombinant Inbred Line Populations of Arabidopsis thaliana Genotyped With Consensus Single-Nucleotide Polymorphism Markers , 2008, Genetics.

[83]  Marcelo P. Segura-Lepe,et al.  Rare and low-frequency coding variants alter human adult height , 2016, Nature.

[84]  D. Gianola,et al.  Genomic Heritability: What Is It? , 2014, PLoS genetics.

[85]  P. VanRaden,et al.  Efficient methods to compute genomic predictions. , 2008, Journal of dairy science.

[86]  W Kelley Thomas,et al.  The Rate and Spectrum of Microsatellite Mutation in Caenorhabditis elegans and Daphnia pulex , 2008, Genetics.

[87]  A. Kamran-Disfani,et al.  Selfing, adaptation and background selection in finite populations , 2014, Journal of evolutionary biology.

[88]  L. Cook The Genetical Theory of Natural Selection — A Complete Variorum Edition , 2000, Heredity.

[89]  T. Mackay,et al.  Complex genetic architecture of Drosophila aggressive behavior , 2011, Proceedings of the National Academy of Sciences.

[90]  L. Kruglyak,et al.  Natural Variation in a Chloride Channel Subunit Confers Avermectin Resistance in C. elegans , 2012, Science.

[91]  D. Halligan,et al.  Spontaneous Mutation Accumulation Studies in Evolutionary Genetics , 2009 .

[92]  P. Phillips,et al.  Selective sweeps and parallel mutation in the adaptive recovery from deleterious mutation in Caenorhabditis elegans. , 2010, Genome research.

[93]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[94]  Genetic Basis of Transcriptome Diversity in Drosophila melanogaster , 2015 .

[95]  C. Baer,et al.  Spontaneous mutational and standing genetic (co)variation at dinucleotide microsatellites in Caenorhabditis briggsae and Caenorhabditis elegans. , 2008, Molecular biology and evolution.

[96]  A. Cutter,et al.  Evolution of the Caenorhabditis elegans genome. , 2009, Molecular biology and evolution.

[97]  C. R. Henderson Best Linear Unbiased Prediction of Nonadditive Genetic Merits in Noninbred Populations , 1985 .

[98]  C. Baer,et al.  Genetic (Co)variation for life span in rhabditid nematodes: role of mutation, selection, and history. , 2009, The journals of gerontology. Series A, Biological sciences and medical sciences.

[99]  Martin P. Boer,et al.  Reconstruction of Genome Ancestry Blocks in Multiparental Populations , 2015, Genetics.

[100]  A. Long,et al.  Joint Estimates of Quantitative Trait Locus Effect and Frequency Using Synthetic Recombinant Populations of Drosophila melanogaster , 2007, Genetics.

[101]  C. Queitsch,et al.  A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana , 2014, bioRxiv.

[102]  D. Nyholt,et al.  All LODs are not created equal. , 2000, American journal of human genetics.

[103]  Mark Abney,et al.  Permutation Testing in the Presence of Polygenic Variation , 2015, bioRxiv.

[104]  C. Baer,et al.  Mutation Is a Sufficient and Robust Predictor of Genetic Variation for Mitotic Spindle Traits in Caenorhabditis elegans , 2016, Genetics.

[105]  C. Baer,et al.  The red death meets the abdominal bristle: Polygenic mutation for susceptibility to a bacterial pathogen in Caenorhabditis elegans , 2015, Evolution; international journal of organic evolution.

[106]  L. Kruglyak,et al.  Selection at Linked Sites Shapes Heritable Phenotypic Variation in C. elegans , 2010, Science.

[107]  A. Cutter Caenorhabditis evolution in the wild , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[108]  P. Phillips,et al.  FITNESS RECOVERY AND COMPENSATORY EVOLUTION IN NATURAL MUTANT LINES OF C. ELEGANS , 2011, Evolution; international journal of organic evolution.

[109]  Amelia G. White,et al.  Wild worm embryogenesis harbors ubiquitous polygenic modifier variation , 2015, eLife.

[110]  Kendra J. Lipinski,et al.  High Spontaneous Rate of Gene Duplication in Caenorhabditis elegans , 2011, Current Biology.

[111]  M. Lynch,et al.  Mutation Accumulation in Populations of Varying Size: The Distribution of Mutational Effects for Fitness Correlates in Caenorhabditis elegans , 2004, Genetics.

[112]  Avinash Kewalramani,et al.  Abundance, Distribution, and Mutation Rates of Homopolymeric Nucleotide Runs in the Genome of Caenorhabditis elegans , 2004, Journal of Molecular Evolution.

[113]  Brian Charlesworth,et al.  INBREEDING AND OUTBREEDING DEPRESSION IN CAENORHABDITIS NEMATODES , 2007, Evolution; international journal of organic evolution.

[114]  L. Kruglyak,et al.  A Novel Sperm-Delivered Toxin Causes Late-Stage Embryo Lethality and Transmission Ratio Distortion in C. elegans , 2011, PLoS biology.

[115]  D. Riddle,et al.  Defining wild-type life span in Caenorhabditis elegans. , 2000, The journals of gerontology. Series A, Biological sciences and medical sciences.

[116]  N. Barton How does epistasis influence the response to selection? , 2016, Heredity.

[117]  G. Churchill,et al.  Weak Epistasis Generally Stabilizes Phenotypes in a Mouse Intercross , 2016, PLoS genetics.

[118]  Bryn E. Gaertner,et al.  Genomic Analysis of Genotype-by-Social Environment Interaction for Drosophila melanogaster Aggressive Behavior , 2017, Genetics.

[119]  C. Haley,et al.  An Evolutionary Perspective on Epistasis and the Missing Heritability , 2013, PLoS genetics.

[120]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[121]  P. Phillips Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems , 2008, Nature Reviews Genetics.

[122]  Detlef Weigel,et al.  Natural Variation in Arabidopsis: From Molecular Genetics to Ecological Genomics1[W][OA] , 2011, Plant Physiology.

[123]  T. Mukai The Genetic Structure of Natural Populations of DROSOPHILA MELANOGASTER. VII Synergistic Interaction of Spontaneous Mutant Polygenes Controlling Viability. , 1969, Genetics.

[124]  Leonid Kruglyak,et al.  Catecholamine receptor polymorphisms affect decision-making in C. elegans , 2011, Nature.

[125]  Daniel M. Gatti,et al.  The diversity outbred mouse population , 2012, Mammalian Genome.

[126]  L. Kruglyak,et al.  Breeding Designs for Recombinant Inbred Advanced Intercross Lines , 2008, Genetics.

[127]  P. Visscher,et al.  From Galton to GWAS: quantitative genetics of human height. , 2010, Genetics research.

[128]  D. Charlesworth,et al.  Breeding systems and genome evolution. , 2001, Current opinion in genetics & development.

[129]  RAPID FITNESS RECOVERY IN MUTATIONALLY DEGRADED LINES OF CAENORHABDITIS ELEGANS , 2003, Evolution; international journal of organic evolution.

[130]  R. B. Azevedo,et al.  TESTING LIFE‐HISTORY PLEIOTROPY IN CAENORHABDITIS ELEGANS , 2001, Evolution; international journal of organic evolution.

[131]  F. Galton Regression Towards Mediocrity in Hereditary Stature. , 1886 .

[132]  Rachel B. Brem,et al.  The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Michael R. Dohm,et al.  Repeatability estimates do not always set an upper limit to heritability , 2002 .

[134]  R. Watson,et al.  PERSPECTIVE: SIGN EPISTASIS AND GENETIC COSTRAINT ON EVOLUTIONARY TRAJECTORIES , 2005, Evolution; international journal of organic evolution.

[135]  Susan McCouch,et al.  Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding , 2013, Rice.

[136]  Evan Z. Macosko,et al.  Quantitative Mapping of a Digenic Behavioral Trait Implicates Globin Variation in C. elegans Sensory Behaviors , 2009, Neuron.

[137]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[138]  Leonid Kruglyak,et al.  Genetic interactions contribute less than additive effects to quantitative trait variation in yeast , 2015, Nature Communications.

[139]  J. Enjalbert,et al.  Efficiently Tracking Selection in a Multiparental Population: The Case of Earliness in Wheat , 2014, Genetics.

[140]  Kevin R. Thornton,et al.  The Power to Detect Quantitative Trait Loci Using Resequenced, Experimentally Evolved Populations of Diploid, Sexual Organisms , 2014, Molecular biology and evolution.

[141]  Moudud Alam,et al.  hglm: A Package for Fitting Hierarchical Generalized Linear Models , 2010, R J..

[142]  D. Marshall,et al.  The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? , 2016, Evolutionary applications.

[143]  L. Kruglyak,et al.  Molecular basis of the copulatory plug polymorphism in Caenorhabditis elegans , 2008, Nature.

[144]  L. B. Snoek,et al.  Remarkably Divergent Regions Punctuate the Genome Assembly of the Caenorhabditis elegans Hawaiian Strain CB4856 , 2015, Genetics.

[145]  L. Andersson,et al.  Epistasis and the release of genetic variation during long-term selection , 2006, Nature Genetics.

[146]  Robert B. Heckendorn,et al.  Should evolutionary geneticists worry about higher-order epistasis? , 2013, Current opinion in genetics & development.

[147]  G. Wray The evolutionary significance of cis-regulatory mutations , 2007, Nature Reviews Genetics.

[148]  M. Causse,et al.  Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. , 2015, Plant biotechnology journal.

[149]  Leonid Kruglyak,et al.  Accounting for genetic interactions improves modeling of individual quantitative trait phenotypes in yeast , 2016, Nature Genetics.

[150]  I. Chelo,et al.  THE OPPORTUNITY FOR BALANCING SELECTION IN EXPERIMENTAL POPULATIONS OF CAENORHABDITIS ELEGANS , 2013, Evolution; international journal of organic evolution.

[151]  MARTI J. ANDERSONa,et al.  PERMUTATION TESTS FOR MULTIFACTORIAL ANALYSIS OF VARIANCE , 2008 .

[152]  J. Cheverud,et al.  EPISTASIS AS A SOURCE OF INCREASED ADDITIVE GENETIC VARIANCE AT POPULATION BOTTLENECKS , 1996, Evolution; international journal of organic evolution.

[153]  A. Caballero,et al.  Response to selection from new mutation and effective size of partially inbred populations. I. Theoretical results , 1995 .

[154]  C. M. Lessells,et al.  Unrepeatable repeatabilities: a common mistake , 1987 .

[155]  M. Rockman,et al.  Natural Variation in plep-1 Causes Male-Male Copulatory Behavior in C. elegans , 2015, Current Biology.

[156]  Doug Speed,et al.  Improved heritability estimation from genome-wide SNPs. , 2012, American journal of human genetics.

[157]  J. Pritchard,et al.  The allelic architecture of human disease genes: common disease-common variant...or not? , 2002, Human molecular genetics.

[158]  S. Proulx,et al.  The genetic basis and experimental evolution of inbreeding depression in Caenorhabditis elegans , 2013, Heredity.

[159]  M. Félix,et al.  Pervasive robustness in biological systems , 2015, Nature Reviews Genetics.

[160]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[161]  L. Kruglyak,et al.  Recombinational Landscape and Population Genomics of Caenorhabditis elegans , 2009, PLoS genetics.

[162]  Theresa Stiernagle Maintenance of C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[163]  M. Goddard,et al.  Accurate Prediction of Genetic Values for Complex Traits by Whole-Genome Resequencing , 2010, Genetics.

[164]  J. Kelly,et al.  Naturally segregating loci exhibit epistasis for fitness , 2015, Biology Letters.

[165]  Russell B. Corbett-Detig,et al.  Genetic Incompatibilities are Widespread Within Species , 2013, Nature.

[166]  Z. Prokop,et al.  Environmental influence on the genetic correlations between life-history traits in Caenorhabditis elegans , 2007, Heredity.

[167]  Dee R. Denver,et al.  High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome , 2004, Nature.

[168]  I. Goldman William Friedman, Geneticist Turned Cryptographer , 2017, Genetics.

[169]  W. Wood,et al.  Genetic analysis of life-span in Caenorhabditis elegans. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[170]  Leonid Kruglyak,et al.  A Variant in the Neuropeptide Receptor npr-1 is a Major Determinant of Caenorhabditis elegans Growth and Physiology , 2014, PLoS genetics.

[171]  Leonid Kruglyak,et al.  A Polymorphism in npr-1 Is a Behavioral Determinant of Pathogen Susceptibility in C. elegans , 2009, Science.

[172]  M. Félix,et al.  Role of Pleiotropy in the Evolution of a Cryptic Developmental Variation in Caenorhabditis elegans , 2012, PLoS biology.

[173]  M. Goddard,et al.  Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture , 2016, Proceedings of the Royal Society B: Biological Sciences.

[174]  Kenneth Rice,et al.  Permutation and Parametric Bootstrap Tests for Gene–Gene and Gene–Environment Interactions , 2011, Annals of human genetics.

[175]  N. Barton,et al.  Natural and sexual selection on many loci. , 1991, Genetics.

[176]  Ross M. Fraser,et al.  Defining the role of common variation in the genomic and biological architecture of adult human height , 2014, Nature Genetics.

[177]  D. Inzé,et al.  Combining growth-promoting genes leads to positive epistasis in Arabidopsis thaliana , 2014, eLife.

[178]  Martin S. Taylor,et al.  Genome-wide genetic association of complex traits in heterogeneous stock mice , 2006, Nature Genetics.

[179]  Marti J. Anderson,et al.  Permutation tests for multi-factorial analysis of variance , 2003 .

[180]  Richard Durbin,et al.  Estimation of Epistatic Variance Components and Heritability in Founder Populations and Crosses , 2014, Genetics.

[181]  Russell L. Malmberg,et al.  Epistasis for Fitness-Related Quantitative Traits in Arabidopsis thaliana Grown in the Field and in the Greenhouse , 2005, Genetics.

[182]  D. Falconer,et al.  Introduction to Quantitative Genetics. , 1962 .

[183]  J. Hodgkin,et al.  Natural variation and copulatory plug formation in Caenorhabditis elegans. , 1997, Genetics.

[184]  N. Morton Sequential tests for the detection of linkage. , 1955, American journal of human genetics.

[185]  A. Long,et al.  Properties and Power of the Drosophila Synthetic Population Resource for the Routine Dissection of Complex Traits , 2012, Genetics.

[186]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .