Kernel-based Subspace Analysis for Face Recognition

In face recognition, if the extracted input data contains misleading information (uncertainty), the classifiers may produce degraded classification performance. In this paper, we employed kernel-based discriminant analysis method for the non-separable problems in face recognition under facial expression changes. The effect of the transformations on a subsequent classification was tested in combination with learning algorithms. We found that the transformation of kernel-based discriminant analysis has a beneficial effect on the classification performance. The experimental results indicated that the nonlinear discriminant analysis method dealt with the uncertainty problem very well. Facial expressions can be used as another behavior biometric for human identification. It appears that face recognition may be robust to facial expression changes, and thus applicable.

[1]  Vijayan K. Asari,et al.  L2-norm approximation based learning in recurrent neural networks for expression invariant face recognition , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[2]  Narendra Ahuja,et al.  Face recognition using kernel eigenfaces , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[3]  V. Ivancevic,et al.  Factor analysis of essential facial features , 2003, Proceedings of the 25th International Conference on Information Technology Interfaces, 2003. ITI 2003..

[4]  J. Cohn,et al.  Automated face analysis by feature point tracking has high concurrent validity with manual FACS coding. , 1999, Psychophysiology.

[5]  Beat Fasel,et al.  Automati Fa ial Expression Analysis: A Survey , 1999 .

[6]  Stan Z. Li,et al.  Face recognition using the nearest feature line method , 1999, IEEE Trans. Neural Networks.

[7]  H. Deutsch Principle Component Analysis , 2004 .

[8]  Maja Pantic,et al.  Automatic Analysis of Facial Expressions: The State of the Art , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Aleix M. Martínez,et al.  Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Shimon Ullman,et al.  Face Recognition: The Problem of Compensating for Changes in Illumination Direction , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[12]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Michael J. Lyons,et al.  Automatic Classification of Single Facial Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Brian C. Lovell,et al.  Illumination and expression invariant face recognition with one sample image , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[15]  Chung-Lin Huang,et al.  Facial Expression Recognition Using Model-Based Feature Extraction and Action Parameters Classification , 1997, J. Vis. Commun. Image Represent..

[16]  Yanxi Liu,et al.  Facial asymmetry quantification for expression invariant human identification , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[17]  D. Zhang,et al.  Principle Component Analysis , 2004 .

[18]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[19]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[20]  Maja Pantic,et al.  Fully Automatic Facial Action Unit Detection and Temporal Analysis , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[21]  Alex Pentland,et al.  Human Face Recognition and the Face Image Set's Topology , 1994 .

[22]  Fumio Hara,et al.  Recognition of Six basic facial expression and their strength by neural network , 1992, [1992] Proceedings IEEE International Workshop on Robot and Human Communication.

[23]  Zhengyou Zhang,et al.  Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[24]  Maja Pantic,et al.  Facial action recognition for facial expression analysis from static face images , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[26]  Takeo Kanade,et al.  Recognizing Action Units for Facial Expression Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[28]  Po-Hsiang Tsai,et al.  Expression-invariant face recognition for small class problem , 2005, CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005..

[29]  Kwang In Kim,et al.  Face recognition using kernel principal component analysis , 2002, IEEE Signal Processing Letters.

[30]  Shimon Ullman,et al.  Face Recognition: The Problem of Compensating for Changes in Illumination Direction , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[32]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  David G. Stork,et al.  Pattern Classification , 1973 .

[34]  Maja Pantic,et al.  Expert system for automatic analysis of facial expressions , 2000, Image Vis. Comput..

[35]  Tony Jan,et al.  Expression-invariant face recognition system using subspace model analysis , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[36]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[37]  Michael J. Lyons,et al.  Coding facial expressions with Gabor wavelets , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[38]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[39]  Alex Pentland,et al.  Coding, Analysis, Interpretation, and Recognition of Facial Expressions , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[41]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[42]  Takeo Kanade,et al.  Feature-point tracking by optical flow discriminates subtle differences in facial expression , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.