Comparison of selected performances of biological and electronic information processing structures

We present the information processing perspective on biological systems. Several metrics, similar to the ones used in digital electronic circuits, are introduced. These metrics allow us to compare biological information processing structures with their electronic counterparts, to define the ones with the best dynamical properties, analyse their compatibility and most importantly, automatize their design. Regarding the metric values obtained and used on a simple example, target applications of synthetic information processing biological structures are discussed. Streszczenie. W artykule opisano zagadnienie przeplywu informacji w systemach biologicznych. Zastosowano tu odwzorowanie na elementach i obwodach elektronicznych, co pozwolilo na analize ich wlasności, w tym dynamicznych oraz zautomatyzowanie projektowania takich modeli. Zawarto takze omowienie otrzymanych wynikow badan. (Porownanie wybranych parametrow struktur przeplywu informacji w systemie biologicznych i elektronicznym).

[1]  C. Pennartz,et al.  A Mathematical Model for the Intracellular Circadian Rhythm Generator , 1999, The Journal of Neuroscience.

[2]  Javier Fernández de Cañete,et al.  Introduction to systems , 2015 .

[3]  Hamid Bolouri,et al.  A method for estimating stochastic noise in large genetic regulatory networks , 2005, Bioinform..

[4]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  James J. Collins,et al.  Next-Generation Synthetic Gene Networks , 2009, Nature Biotechnology.

[6]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[7]  Andrej Dobnikar,et al.  Design of information processing in cells using artificial gene repressors , 2012 .

[8]  Oscar P. Kuipers,et al.  Phenotypic variation in bacteria: the role of feedback regulation , 2006, Nature Reviews Microbiology.

[9]  S. Leibler,et al.  Mechanisms of noise-resistance in genetic oscillators , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  P. Patnaik External, extrinsic and intrinsic noise in cellular systems: analogies and implications for protein synthesis , 2006 .

[11]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[12]  T. Lu,et al.  Synthetic biology: an emerging engineering discipline. , 2012, Annual review of biomedical engineering.

[13]  Uri Alon,et al.  An Introduction to Systems Biology , 2006 .

[14]  Johan Paulsson,et al.  Separating intrinsic from extrinsic fluctuations in dynamic biological systems , 2011, Proceedings of the National Academy of Sciences.

[15]  Glenn Vinnicombe,et al.  Noise in Gene Regulatory Networks , 2008, IEEE Transactions on Automatic Control.

[16]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[17]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Chin,et al.  Synthesis of orthogonal transcription-translation networks , 2009, Proceedings of the National Academy of Sciences.