Spreading Set With Error Correction for Multiple-Access Adder Channel

The necessary and sufficient condition for constructing a spreading set with decodability is investigated. It is proved that for a given delta-decodable spreading set and a qtimesq square matrix H with components 1 or -1, a qdelta-decodable spreading set S* is obtained if and only if H is a Hadamard matrix. In addition, a decoding rule with error correction and message data detection is provided

[1]  Dusan B. Jevtic On Families of Sets of Integral Vectors Whose Representatives form Sum-Distinct Sets , 1995, SIAM J. Discret. Math..

[2]  Brian L. Hughes,et al.  Nearly optimal multiuser codes for the binary adder channel , 1996, IEEE Trans. Inf. Theory.

[3]  G. H. Khachatrian,et al.  Code Construction for the T-User Noiseless Adder Channel , 1998, IEEE Trans. Inf. Theory.

[4]  D. V. Gokhale,et al.  A Survey of Statistical Design and Linear Models. , 1976 .

[5]  Kin-ichiroh Tokiwa,et al.  A Code Construction for M-Choose-T Communication over the Multiple-Access Adder Channel , 1995 .

[6]  Bijan Jabbari,et al.  Spreading codes for direct sequence CDMA and wideband CDMA cellular networks , 1998, IEEE Commun. Mag..

[7]  Laszlo GYijRFI,et al.  Superimposed Codes in R " , 1986 .

[8]  Jun Cheng,et al.  T-User Code with Arbitrary Code Length for Multiple-Access Adder Channel (Special Section on Information Theory and Its Applications) , 1999 .

[9]  Jun Cheng,et al.  User Identification by Signature Code for Noisy Multiple-Access Adder Channel , 2006, 2006 IEEE International Symposium on Information Theory.

[10]  László Györfi,et al.  Superimposed codes in Rn , 1988, IEEE Trans. Inf. Theory.

[11]  Raphael Rom,et al.  Forward collision resolution - A technique for random multiple-access to the adder channel , 1993, IEEE Trans. Inf. Theory.

[12]  G. H. Khachatrian,et al.  A new approach to the design of codes for synchronous-CDMA systems , 1995, IEEE Trans. Inf. Theory.

[13]  John H. Wilson Error-correcting codes for a T-user binary adder channel , 1988, IEEE Trans. Inf. Theory.

[14]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[15]  Jun Cheng,et al.  Affine Code for T-User Noisy Multiple-Access Adder Channel , 2000 .

[16]  Dusan B. Jevtic Disjoint uniquely decodable codebooks for noiseless synchronized multiple-access adder channels generated by integer sets , 1992, IEEE Trans. Inf. Theory.

[17]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[18]  Pingzhi Fan,et al.  Superimposed codes for the multiaccess binary adder channel , 1995, IEEE Trans. Inf. Theory.

[19]  Jun Cheng,et al.  T-User Uniquely Decodable k-Ary Affine Code for Multiple-Access Adder Channel(Special Section on Information Theory and Its Applications) , 2000 .

[20]  E. J. Weldon,et al.  Coding for T-user multiple-access channels , 1979, IEEE Trans. Inf. Theory.

[21]  Jun Cheng,et al.  A multiuser k-ary code for the noisy multiple-access adder channel , 2001, IEEE Trans. Inf. Theory.

[22]  Peter Mathys,et al.  A class of codes for a T active users out of N multiple-access communication system , 1990, IEEE Trans. Inf. Theory.

[23]  T. Bohman A sum packing problem of Erdös and the Conway-Guy sequence , 1996 .