BSMBench: a flexible and scalable supercomputer benchmark from computational particle physics

Benchmarking plays a central role in the evaluation of High Performance Computing architectures. Several benchmarks have been designed that allow users to stress various components of supercomputers. In order for the figures they provide to be useful, benchmarks need to be representative of the most common real-world scenarios. In this work, we introduce BSMBench, a benchmarking suite derived from Monte Carlo code used in computational particle physics. The advantage of this suite (which can be freely downloaded from http://www.bsmbench.org) over others is the capacity to vary the relative importance of computation and communication. This enables the tests to simulate various practical situations. To showcase BSMBench, we perform a wide range of tests on various architectures, from desktop computers to state-of-theart supercomputers, and discuss the corresponding results. Possible future directions of development of the benchmark are also outlined.

[1]  L. Debbio,et al.  Conformal versus confining scenario in SU(2) with adjoint fermions , 2009, 0907.3896.

[2]  G. Sterman An Introduction To Quantum Field Theory , 1994 .

[3]  Laurence Jacobs,et al.  Lattice gauge theories: an introduction , 2008 .

[4]  Hans Werner Meuer,et al.  Top500 Supercomputer Sites , 1997 .

[5]  S. Schaefer Algorithms for lattice QCD: progress and challenges , 2010, 1011.5641.

[6]  FengWu-chun,et al.  The Green500 List , 2007 .

[7]  H. Jones,et al.  Groups, representations, and physics , 1990 .

[8]  L. Debbio,et al.  Infrared dynamics of minimal walking technicolor , 2010, 1004.3206.

[9]  L. Debbio,et al.  Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions , 2008, 0805.2058.

[10]  L. Debbio,et al.  Improved lattice spectroscopy of minimal walking technicolor , 2011, 1104.4301.

[11]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[12]  Minimal Walking Technicolor,et al.  MCRG Minimal Walking Technicolor , 2010 .

[13]  B. Lucini,et al.  Topology of Minimal Walking Technicolor , 2012, 1209.5579.

[14]  Jan Smit,et al.  Introduction to Quantum Fields on a Lattice , 2002 .

[15]  Martin Lüscher,et al.  Lattice QCD on PCs , 2001 .

[16]  Francesco Sannino,et al.  Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors , 2011, 1109.3513.

[17]  G. Moraitis,et al.  Orientifold Planar Equivalence: The Quenched Meson Spectrum , 2010, 1010.6053.

[18]  J. T. Childers,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[19]  L. Debbio,et al.  Mesonic spectroscopy of Minimal Walking Technicolor , 2010, 1004.3197.

[20]  Francesco Sannino,et al.  Orthogonal Technicolor with Isotriplet Dark Matter on the Lattice , 2012, 1211.5021.

[21]  H. Georgi Lie Algebras in Particle Physics: From Isospin to Unified Theories , 1994 .