The Digital Honey Bee Brain Atlas

For a comprehensive understanding of brain function, compiling data from a range of experiments is necessary. Digital brain atlases provide useful reference systems at the interface of neuroanatomy, neurophysiology, behavioral biology and neuroinformatics. Insect brains are particularly useful because they constitute complete three-dimensional references for the integration of morphological and functional data. Image acquisition is favored by small sized brains permitting whole brain scans using confocal microscopy. Insect brain atlases thus serve different purposes, e.g. quantitative volume analyses of brain neuropils for studying closely related species, developmental processes and neuronal plasticity; documenting and storing the Gestalt and spatial relations of neurons, neural networks and neuropils; structuring large amounts of anatomical and physiological data, thus providing a repository for data sharing among researchers. This chapter focuses on the spatial relations of neurons in the honey bee brain using the Honey bee Standard Brain (HSB). The integration of neurons into the HSB requires standardized image processing, computer algorithms and protocols that aid reconstruction and visualization. A statistical shape model has been developed in order to facilitate the segmentation process. Examples from the olfactory and mechanosensory pathways in the bee brain and the organization of the mushroom bodies (MBs) are used to illustrate the implementation and strength of the HSB. An outline will be given for the use of the brain atlas to link semantic information (e.g. from physiology, biochemistry, genetics) and neuronal morphology.

[1]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[2]  Torsten Rohlfing,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[3]  Kei Ito,et al.  Technical and Organizational Considerations for the Long-Term Maintenance and Development of Digital Brain Atlases and Web-Based Databases , 2010, Front. Syst. Neurosci..

[4]  Randolf Menzel,et al.  Digital, Three-dimensional Average Shaped Atlas of the Heliothis Virescens Brain with Integrated Gustatory and Olfactory Neurons , 2009, Frontiers in systems neuroscience.

[5]  George Adelman,et al.  Encyclopedia of neuroscience , 2004 .

[6]  Hans-Christian Hege,et al.  Ontology-Based Visualization of Hierarchical Neuroanatomical Structures , 2008, VCBM.

[7]  R. Menzel,et al.  Learning-Related Plasticity in PE1 and Other Mushroom Body-Extrinsic Neurons in the Honeybee Brain , 2007, The Journal of Neuroscience.

[8]  Randolf Menzel,et al.  Conditioning: Simple Neural Circuits in the Honeybee , 2009 .

[9]  F. C. Kenyon The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda , 1896 .

[10]  Ulrike Maronde Common projection areas of antennal and visual pathways in the honeybee brain, apis mellifera , 1991, The Journal of comparative neurology.

[11]  Jonathan Nissanov,et al.  The Neuroterrain 3D Mouse Brain Atlas , 2008, Frontiers Neuroinformatics.

[12]  R. Menzel Searching for the memory trace in a mini-brain, the honeybee. , 2001, Learning & memory.

[13]  A Maye,et al.  VISUALIZATION, RECONSTRUCTION, AND INTEGRATION OF NEURONAL STRUCTURES IN DIGITAL BRAIN ATLASES , 2006, The International journal of neuroscience.

[14]  Hans-Christian Hege,et al.  Model-based autosegmentation of brain structures in the honeybee using statistical shape models , 2007 .

[15]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[16]  Hans-Christian Hege,et al.  Pipeline for the creation of surface-based averaged brain atlases , 2007 .

[17]  R. Menzel,et al.  GABA‐immunoreactive neurons in the mushroom bodies of the honeybee: An electron microscopic study , 2001, The Journal of comparative neurology.

[18]  Arthur W. Toga,et al.  Digital Atlases as a Framework for Data Sharing , 2008, Front. Neurosci..

[19]  Christos Constantinidis,et al.  Comparison of Neural Activity Related to Working Memory in Primate Dorsolateral Prefrontal and Posterior Parietal Cortex , 2010, Front. Syst. Neurosci..

[20]  Arthur W. Toga,et al.  Neuroinformatics Original Research Article , 2022 .

[21]  C Giovanni Galizia,et al.  Parallel olfactory systems in insects: anatomy and function. , 2010, Annual review of entomology.

[22]  A W Toga,et al.  Maps of the Brain , 2001, The Anatomical record.

[23]  Thomas Lange,et al.  Automatic segmentation of the liver for preoperative planning of resections. , 2003, Studies in health technology and informatics.

[24]  R. Menzel,et al.  Bee brains, B-splines and computational democracy: generating an average shape atlas , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[25]  Randolf Menzel,et al.  Rapid odor processing in the honeybee antennal lobe network , 2009 .

[26]  R. Menzel,et al.  Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha‐lobe , 1993, The Journal of comparative neurology.

[27]  Gerwin Schalk,et al.  Rapid Communication with a “P300” Matrix Speller Using Electrocorticographic Signals (ECoG) , 2010, Front. Neurosci..

[28]  G. Bicker,et al.  Distribution of GABA‐like immunoreactivity in the brain of the honeybee , 1986, The Journal of comparative neurology.

[29]  Sebastian Kirschner,et al.  Dual olfactory pathway in the honeybee, Apis mellifera , 2006, The Journal of comparative neurology.

[30]  Gordon M. Shepherd,et al.  Handbook of Brain Microcircuits , 2010 .

[31]  R. Menzel,et al.  A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy , 1999, Cell and Tissue Research.

[32]  Joachim Schachtner,et al.  Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta , 2009, The Journal of comparative neurology.

[33]  R. Menzel,et al.  Three‐dimensional average‐shape atlas of the honeybee brain and its applications , 2005, The Journal of comparative neurology.

[34]  D. Vowles The Structure and Connexions of the Corpora Pedunculata in Bees and Ants , 1955 .

[35]  A. Cardona,et al.  An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy , 2010, PLoS biology.

[36]  Hans-Christian Hege,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[37]  R. Menzel,et al.  Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera , 2001, The Journal of comparative neurology.

[38]  Maryann E. Martone,et al.  Ontologies for Neuroscience: What are they and What are they Good for? , 2008, Frontiers in neuroscience.

[39]  Michael T. Mader,et al.  The Drosophila Standard Brain , 2002, Current Biology.

[40]  Hanchuan Peng,et al.  Bioimage informatics: a new area of engineering biology , 2008, Bioinform..

[41]  N. Strausfeld Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes , 2002, The Journal of comparative neurology.

[42]  J. Mazziotta,et al.  Brain Mapping: The Methods , 2002 .

[43]  Arnim Jenett,et al.  The Virtual Insect Brain protocol: creating and comparing standardized neuroanatomy , 2006, BMC Bioinformatics.

[44]  B. Grünewald Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera , 1999, The Journal of comparative neurology.

[45]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[46]  Allan R. Jones,et al.  The Allen Brain Atlas: 5 years and beyond , 2009, Nature Reviews Neuroscience.

[47]  Hiroyuki Ai,et al.  Vibration-Processing Interneurons in the Honeybee Brain , 2009, Front. Syst. Neurosci..

[48]  R. Menzel,et al.  Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. , 2002, Journal of Comparative Physiology A.

[49]  Leon French,et al.  Large-Scale Analysis of Gene Expression and Connectivity in the Rodent Brain: Insights through Data Integration , 2011, Front. Neuroinform..

[50]  Randolf Menzel,et al.  Response characteristics of vibration‐sensitive interneurons related to Johnston's organ in the honeybee, Apis mellifera , 2009, The Journal of comparative neurology.

[51]  Torsten Rohlfing,et al.  Standardized atlas of the brain of the desert locust, Schistocerca gregaria , 2008, Cell and Tissue Research.

[52]  Ryohei Kanzaki,et al.  Reconstruction of Virtual Neural Circuits in an Insect Brain , 2009, Front. Neurosci..

[53]  R. Menzel Olfaction in Invertebrates: Honeybee , 2009 .