A Simple and Powerful Approach for Studying Constructivity, Computability, and Complexity

In this contribution a natural and simple as well as general and efficient frame for studying effectivity (Type 2 theory of effectivity, TTE) is presented.

[1]  Klaus Weihrauch The Lowest Wadge-Degrees of Subsets of the Cantor Space , 1991 .

[2]  A. S. Troelstra,et al.  Principles of intuitionism , 1969 .

[3]  Robert van Wesep,et al.  Wadge Degrees and Projective Ordinals: The Cabal Seminar, Volume II: Wadge degrees and descriptive set theory , 1978 .

[4]  Christoph Kreitz,et al.  Type 2 Computational Complexity of Functions on Cantor's Space , 1991, Theor. Comput. Sci..

[5]  M. Beeson Foundations of Constructive Mathematics , 1985 .

[6]  Christoph Kreitz,et al.  Compactness in constructive analysis revisited , 1987, Ann. Pure Appl. Log..

[7]  Robert L. Constable,et al.  Computability Concepts for Programming Language Semantics , 1976, Theor. Comput. Sci..

[8]  A. Mostowski On computable sequences , 1957 .

[9]  Klaus Weihrauch,et al.  Type 2 Recursion Theory , 1985, Theor. Comput. Sci..

[10]  Klaus Weihrauch On Natural Numberings and Representations , 1982 .

[11]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[12]  Norbert Th. Müller,et al.  Uniform Computational Complexity of Taylor Series , 1987, ICALP.

[13]  Jürgen Hauck,et al.  Berechenbare Reelle Funktionen , 1973 .

[14]  Klaus Weihrauch On the complexity of online computations of real functions , 1991, J. Complex..

[15]  A. Heyting,et al.  Intuitionism: An introduction , 1956 .

[16]  L. Brouwer,et al.  HISTORICAL BACKGROUND, PRINCIPLES AND METHODS OF INTUITIONISM , 1975 .

[17]  Michael M. Richter,et al.  Computation and Proof Theory , 1984 .

[18]  Norbert Th. Müller Subpolynomial Complexity Classes of Real Functions and Real Numbers , 1986, ICALP.

[19]  Christoph Kreitz,et al.  Representations of the real numbers and of the open subsets of the set of real numbers , 1987, Ann. Pure Appl. Log..

[20]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[21]  Christoph Kreitz,et al.  Theory of Representations , 1985, Theor. Comput. Sci..

[22]  Richard P. Brent,et al.  Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.

[23]  Klaus Weihrauch,et al.  A unified approach to constructive and recursive analysis , 1984 .

[24]  Ker-I Ko,et al.  Computational Complexity of Real Functions , 1982, Theor. Comput. Sci..

[25]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[26]  Thomas Deil,et al.  Darstellungen und Berechenbarkeit reeller Zahlen , 1983 .