Microbiome single cell atlases generated with a commercial instrument

Single cell sequencing is useful for resolving complex systems into their composite cell types and computationally mining them for unique features that are masked in pooled sequencing. However, while commercial instruments have made single cell analysis widespread for mammalian cells, analogous tools for microbes are limited. Here, we present EASi-seq (Easily Accessible Single microbe sequencing). By adapting the single cell workflow of the commercial Mission Bio Tapestri instrument, this method allows for efficient sequencing of individual microbes’ genomes. EASi-seq allows thousands of microbes to be sequenced per run and, as we show, can generate detailed atlases of human and environmental microbiomes. The ability to capture large shotgun genome datasets from thousands of single microbes provides new opportunities in discovering and analyzing species subpopulations. To facilitate this, we develop a companion bioinformatic pipeline that clusters microbes by similarity, improving whole genome assembly, strain identification, taxonomic classification, and gene annotation. In addition, we demonstrate integration of metagenomic contigs with the EASi-seq datasets to reduce capture bias and increase coverage. Overall, EASi-seq enables high quality single cell genomic data for microbiome samples using an accessible workflow that can be run on a commercially available platform.

[1]  R. Nicol,et al.  Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states , 2023, Cell.

[2]  Ophelia S. Venturelli,et al.  Massively parallel single-cell sequencing of genetic loci in diverse microbial populations , 2022, bioRxiv.

[3]  K. Williams,et al.  Borgs are giant genetic elements with potential to expand metabolic capacity , 2022, Nature.

[4]  K. Yura,et al.  Validation of the application of gel beads-based single-cell genome sequencing platform to soil and seawater , 2022, ISME Communications.

[5]  Derrick E. Wood,et al.  Metagenome analysis using the Kraken software suite , 2022, Nature Protocols.

[6]  Daphna Rothschild,et al.  An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species , 2022, Nature Communications.

[7]  P. J. Lu,et al.  High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome , 2022, Science.

[8]  I. Macaulay,et al.  Into the multiverse: advances in single-cell multiomic profiling. , 2022, Trends in genetics : TIG.

[9]  B. Díez,et al.  Microbial Biogeochemical Cycling of Nitrogen in Arid Ecosystems , 2022, Microbiology and molecular biology reviews : MMBR.

[10]  Eoin L. Brodie,et al.  Life and death in the soil microbiome: how ecological processes influence biogeochemistry , 2022, Nature Reviews Microbiology.

[11]  M. Parkes,et al.  Single-cell genomics for resolution of conserved bacterial genes and mobile genetic elements of the human intestinal microbiota using flow cytometry , 2022, Gut microbes.

[12]  W. Hanage,et al.  Horizontal gene transfer and adaptive evolution in bacteria , 2021, Nature Reviews Microbiology.

[13]  Bertrand Z. Yeung,et al.  Joint single-cell measurements of nuclear proteins and RNA in vivo , 2021, Nature Methods.

[14]  J. F. Beltrán,et al.  Functions predict horizontal gene transfer and the emergence of antibiotic resistance , 2021, Science advances.

[15]  R. Steinert,et al.  Vitamins, the gut microbiome and gastrointestinal health in humans. , 2021, Nutrition research.

[16]  E. Swanner,et al.  An evolving view on biogeochemical cycling of iron , 2021, Nature Reviews Microbiology.

[17]  K. O’Connor Microbiology challenges and opportunities in the circular economy , 2021, Microbiology.

[18]  T. Woyke,et al.  A Genomic Perspective Across Earth’s Microbiomes Reveals That Genome Size in Archaea and Bacteria Is Linked to Ecosystem Type and Trophic Strategy , 2021, bioRxiv.

[19]  Brendan L. O’Connell,et al.  High-content single-cell combinatorial indexing , 2021, Nature Biotechnology.

[20]  P. Manghi,et al.  Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 , 2020, bioRxiv.

[21]  Minoru Kanehisa,et al.  KEGG: integrating viruses and cellular organisms , 2020, Nucleic Acids Res..

[22]  F. Bäckhed,et al.  Gut microbial metabolites as multi-kingdom intermediates , 2020, Nature reviews. Microbiology.

[23]  A. Saliba,et al.  Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria , 2020, Nature Microbiology.

[24]  I. Amit,et al.  Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer , 2020, Cell.

[25]  Jian Xu,et al.  Phenome-Genome Profiling of Single Bacterial Cell by Raman-Activated Gravity-Driven Encapsulation and Sequencing. , 2020, Small.

[26]  Dmitry Antipov,et al.  Using SPAdes De Novo Assembler , 2020, Current protocols in bioinformatics.

[27]  Jang-Cheon Cho,et al.  Aequoribacter fuscus gen. nov., sp. nov., a new member of the family Halieaceae, isolated from coastal seawater , 2020, Journal of Microbiology.

[28]  Elizabeth N. Bess,et al.  A Genomic Toolkit for the Mechanistic Dissection of Intractable Human Gut Bacteria. , 2020, Cell host & microbe.

[29]  T. Gojobori,et al.  Massively parallel single-cell genome sequencing enables high-resolution analysis of soil and marine microbiome , 2020 .

[30]  A. Abate,et al.  Joint profiling of DNA and proteins in single cells to dissect genotype-phenotype associations in leukemia , 2020, Nature Communications.

[31]  D. Weitz,et al.  Dissolvable Polyacrylamide Beads for High‐Throughput Droplet DNA Barcoding , 2020, Advanced science.

[32]  A. Bhatt,et al.  Complete, closed bacterial genomes from microbiomes using nanopore sequencing , 2020, Nature Biotechnology.

[33]  Jang-Cheon Cho,et al.  Halioglobus maricola sp. nov., isolated from coastal seawater. , 2020, International journal of systematic and evolutionary microbiology.

[34]  Exene Erin Anderson,et al.  Unravelling the collateral damage of antibiotics on gut bacteria , 2021, Nature.

[35]  Leandra M. Brettner,et al.  Microbial single-cell RNA sequencing by split-pool barcoding , 2019, Science.

[36]  Saeed Tavazoie,et al.  Prokaryotic Single-Cell RNA Sequencing by In Situ Combinatorial Indexing , 2019, bioRxiv.

[37]  P. Blatchford,et al.  Human faecal collection methods demonstrate a bias in microbiome composition by cell wall structure , 2019, Scientific Reports.

[38]  Minoru Kanehisa,et al.  Toward understanding the origin and evolution of cellular organisms , 2019, Protein science : a publication of the Protein Society.

[39]  Geoffrey L. Winsor,et al.  CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database , 2019, Nucleic Acids Res..

[40]  Peter D. Karp,et al.  The MetaCyc database of metabolic pathways and enzymes - a 2019 update , 2019, Nucleic Acids Res..

[41]  Masahito Hosokawa,et al.  Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota , 2019, Microbiome.

[42]  Jennifer Lu,et al.  Improved metagenomic analysis with Kraken 2 , 2019, Genome Biology.

[43]  Pardis C. Sabeti,et al.  Benchmarking Metagenomics Tools for Taxonomic Classification , 2019, Cell.

[44]  N. Fierer,et al.  High proportions of bacteria and archaea across most biomes remain uncultured , 2019, The ISME Journal.

[45]  D. Relman,et al.  Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation , 2019, Nature Microbiology.

[46]  Meng-Qi Ye,et al.  Halioglobus sediminis sp. nov., isolated from coastal sediment. , 2019, International journal of systematic and evolutionary microbiology.

[47]  R. Satija,et al.  Integrative single-cell analysis , 2019, Nature Reviews Genetics.

[48]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[49]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[50]  Julia Frunzke,et al.  Cytometry meets next-generation sequencing – RNA-Seq of sorted subpopulations reveals regional replication and iron-triggered prophage induction in Corynebacterium glutamicum , 2018, Scientific Reports.

[51]  U. Hofer The majority is uncultured , 2018, Nature Reviews Microbiology.

[52]  X. Xie,et al.  Three-dimensional genome structures of single diploid human cells , 2018, Science.

[53]  Serafim Batzoglou,et al.  High-quality genome sequences of uncultured microbes by assembly of read clouds , 2018, Nature Biotechnology.

[54]  R. Parkesh,et al.  Bifidobacterium adolescentis is intrinsically resistant to antitubercular drugs , 2018, Scientific Reports.

[55]  D. Bianchi,et al.  Global niche of marine anaerobic metabolisms expanded by particle microenvironments , 2018, Nature Geoscience.

[56]  Rob Knight,et al.  Current understanding of the human microbiome , 2018, Nature Medicine.

[57]  J. DiRuggiero,et al.  MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis , 2018, Microbiome.

[58]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[59]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[60]  J. Marioni,et al.  How Single-Cell Genomics Is Changing Evolutionary and Developmental Biology. , 2017, Annual review of cell and developmental biology.

[61]  A. Danchin,et al.  The contribution of microbial biotechnology to economic growth and employment creation , 2017, Microbial biotechnology.

[62]  N. Segata,et al.  Shotgun metagenomics, from sampling to analysis , 2017, Nature Biotechnology.

[63]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[64]  A. Abate,et al.  SiC-Seq: Single-cell genome sequencing at ultra high-throughput with microfluidic droplet barcoding , 2017, Nature Biotechnology.

[65]  E. Noh,et al.  Complete genome of a denitrifying Halioglobus sp. RR3-57 isolated from a seawater recirculating aquaculture system , 2017 .

[66]  John R. Haliburton,et al.  Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding , 2017, Scientific Reports.

[67]  Eric J. Alm,et al.  Virtual Microfluidics for digital quantification and single-cell sequencing , 2016, Nature Methods.

[68]  S. Manrubia,et al.  The vast unknown microbial biosphere , 2016, Proceedings of the National Academy of Sciences.

[69]  Steven Salzberg,et al.  Bracken: Estimating species abundance in metagenomics data , 2016, bioRxiv.

[70]  Anders Krogh,et al.  Fast and sensitive taxonomic classification for metagenomics with Kaiju , 2016, Nature Communications.

[71]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[72]  N. Salama,et al.  Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments , 2016, Microbiology and Molecular Reviews.

[73]  S. Delgado,et al.  Application of density gradient for the isolation of the fecal microbial stool component and the potential use thereof , 2015, Scientific Reports.

[74]  Adrian W. Briggs,et al.  Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers , 2015, The ISME Journal.

[75]  A. deMello,et al.  The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. , 2015, Lab on a chip.

[76]  Jinling Huang,et al.  Horizontal gene transfer: building the web of life , 2015, Nature Reviews Genetics.

[77]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[78]  Roger G. Linington,et al.  Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters , 2014, Cell.

[79]  Christian Rinke,et al.  An environmental bacterial taxon with a large and distinct metabolic repertoire , 2014, Nature.

[80]  P. Karp,et al.  The challenge of constructing, classifying, and representing metabolic pathways. , 2013, FEMS microbiology letters.

[81]  B. Driscoll,et al.  Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands , 2013, Front. Microbiol..

[82]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[83]  K. Konstantinidis,et al.  Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils , 2012, Proceedings of the National Academy of Sciences.

[84]  Glenn Tesler,et al.  Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory , 2012, BMC Bioinformatics.

[85]  K. Kogure,et al.  Halioglobus japonicus gen. nov., sp. nov. and Halioglobus pacificus sp. nov., members of the class Gammaproteobacteria isolated from seawater. , 2012, International journal of systematic and evolutionary microbiology.

[86]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[87]  M. Klotz,et al.  The Microbial Sulfur Cycle , 2011, Front. Microbio..

[88]  Antti Honkela,et al.  Identifying differentially expressed transcripts from RNA-seq data with biological variation , 2011, Bioinform..

[89]  S. Albers,et al.  The archaeal cell envelope , 2011, Nature Reviews Microbiology.

[90]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[91]  Peter D. Karp,et al.  A survey of metabolic databases emphasizing the MetaCyc family , 2011, Archives of Toxicology.

[92]  Safdar Ali,et al.  Soil beneficial bacteria and their role in plant growth promotion: a review , 2010, Annals of Microbiology.

[93]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[94]  John C. Wooley,et al.  Metagenomics: Facts and Artifacts, and Computational Challenges , 2010, Journal of Computer Science and Technology.

[95]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[96]  Julian Parkhill,et al.  Microbiology in the post-genomic era , 2008, Nature Reviews Microbiology.

[97]  Suzanne M. Paley,et al.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases , 2011, Nucleic Acids Res..

[98]  F. Azam,et al.  Microbial structuring of marine ecosystems , 2007, Nature Reviews Microbiology.

[99]  S. Quake,et al.  Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth , 2007, Proceedings of the National Academy of Sciences.

[100]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[101]  G. Church,et al.  Sequencing genomes from single cells by polymerase cloning , 2006, Nature Biotechnology.

[102]  A. Schramm,et al.  Nitrous Oxide Reductase Genes (nosZ) of Denitrifying Microbial Populations in Soil and the Earthworm Gut Are Phylogenetically Similar , 2006, Applied and Environmental Microbiology.

[103]  Laura S. Frost,et al.  Mobile genetic elements: the agents of open source evolution , 2005, Nature Reviews Microbiology.

[104]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[105]  S. Giovannoni,et al.  The uncultured microbial majority. , 2003, Annual review of microbiology.

[106]  P. Lipke,et al.  Cell Wall Architecture in Yeast: New Structure and New Challenges , 1998, Journal of bacteriology.

[107]  R. Colwell,et al.  Microbial degradation of hydrocarbons in the environment. , 1990, Microbiological reviews.

[108]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..