Disturbance modeling for offset-free linear model predictive control

Abstract An offset-free controller is one that drives controlled outputs to their desired targets at steady state. In the linear model predictive control (MPC) framework, offset-free control is usually achieved by adding step disturbances to the process model. The most widely-used industrial MPC implementations assume a constant output disturbance that can lead to sluggish rejection of disturbances that enter the process elsewhere. This paper presents a general disturbance model that accommodates unmeasured disturbances entering through the process input, state, or output. Conditions that guarantee detectability of the augmented system model are provided, and a steady-state target calculation is constructed to remove the effects of estimated disturbances. Conditions for which offset-free control is possible are stated for the combined estimator, steady-state target calculation, and dynamic controller. Simulation examples are provided to illustrate trade-offs in disturbance model design.

[1]  M. Morari,et al.  Control of linear unstable systems with constraints , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[2]  P. Dorato,et al.  Observing the states of systems with unmeasurable disturbances , 1975 .

[3]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[4]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[5]  J. Rawlings,et al.  Linear model predictive control of unstable processes , 1993 .

[6]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[7]  James B. Rawlings,et al.  Model predictive control with linear models , 1993 .

[8]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[9]  S. Skogestad DYNAMICS AND CONTROL OF DISTILLATION COLUMNS A tutorial introduction , 1997 .

[10]  D. Grant Fisher,et al.  A state space formulation for model predictive control , 1989 .

[11]  E. Davison,et al.  Pole assignment in linear time-invariant multivariable systems with constant disturbances , 1971 .

[12]  P. Marquis,et al.  SMOC, a bridge between state space and model predictive controllers: Application to the automation of a hydrotreating unit , 1988 .

[13]  M. Morari,et al.  Stability of model predictive control with mixed constraints , 1995, IEEE Trans. Autom. Control..

[14]  F. G. Shinskey,et al.  Feedback controllers for the process industries , 1994 .

[15]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[16]  N. Lawrence Ricker,et al.  Model predictive control with state estimation , 1990 .

[17]  Jay H. Lee,et al.  Receding Horizon Recursive State Estimation , 1993, 1993 American Control Conference.

[18]  N. L. Ricker,et al.  Case studies of model-predictive control in pulp and paper production , 1988 .

[19]  Kenneth R. Muske Steady-state target optimization in linear model predictive control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[20]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[21]  James B. Rawlings,et al.  Constrained linear quadratic regulation , 1998, IEEE Trans. Autom. Control..

[22]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[23]  James B. Rawlings,et al.  Nonlinear Model Predictive Control: A Tutorial and Survey , 1994 .

[24]  J. Rawlings,et al.  Feasibility issues in linear model predictive control , 1999 .

[25]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[26]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[27]  C. V. Rao,et al.  Steady states and constraints in model predictive control , 1999 .

[28]  Lorenz T. Biegler,et al.  Constraint handing and stability properties of model‐predictive control , 1994 .

[29]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[30]  James B. Rawlings,et al.  Implementable model predictive control in the state space , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[31]  Carlos E. Garcia,et al.  QUADRATIC PROGRAMMING SOLUTION OF DYNAMIC MATRIX CONTROL (QDMC) , 1986 .

[32]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[33]  James B. Rawlings,et al.  Discrete-time stability with perturbations: application to model predictive control , 1997, Autom..

[34]  D. Chmielewski,et al.  On constrained infinite-time linear quadratic optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[35]  Carlos E. García,et al.  Fundamental Process Control , 1988 .

[36]  Babu Joseph,et al.  Inferential control of processes: Part III. Construction of optimal and suboptimal dynamic estimators , 1978 .

[37]  Manfred Morari,et al.  Studies in the synthesis of control structures for chemical processes: Part III: Optimal selection of secondary measurements within the framework of state estimation in the presence of persistent unknown disturbances , 1980 .