Strength of landmine signatures under different soil conditions: implications for sensor fusion

Most sensors for the detection of buried landmines are influenced by the properties of the soil that surrounds the mine. The temporal and spatial variability in soil properties accounts for a significant part of the detection uncertainty that is associated with most sensors. In particular, most sensor types (e.g. ground-penetrating radar, thermal infrared cameras, and chemical sniffers) are affected by the water content of the soil. However, each sensor type reacts in its own way to variations in soil water content and other soil properties. The resulting variation in sensor performance has serious implications for sensor fusion operations. We show how knowledge of soil physics can contribute to a better understanding of sensor performance and can lead to improved data fusion.

[1]  R. Tye,et al.  thermal conductivity , 2019 .

[2]  Joel T. Johnson,et al.  Environmental and target influences on microwave radiometers for landmine detection , 2001, SPIE Defense + Commercial Sensing.

[3]  Jan M. H. Hendrickx,et al.  Variability of soil water tension and soil water content , 1990 .

[4]  Ibrahim K. Sendur,et al.  Numerical simulation of thermal signatures of buried mines over a diurnal cycle , 2000, Defense, Security, and Sensing.

[5]  Harold Tobin,et al.  Impact of soil water content on landmine detection using radar and thermal infrared sensors , 2001, SPIE Defense + Commercial Sensing.

[6]  C. Bruschini,et al.  A multidisciplinary analysis of frequency domain metal detectors for humanitarian demining , 2002 .

[7]  Erik M. Rosen,et al.  Investigation into the sources of persistent ground-penetrating radar false alarms: data collection, excavation, and analysis , 2003, SPIE Defense + Commercial Sensing.

[8]  Henk A. Lensen,et al.  Sophisticated test facility to detect land mines , 1999, Defense, Security, and Sensing.

[9]  C. Ritsema,et al.  Occurrence of soil water repellency in arid and humid climates , 2000 .

[10]  James H. Cragin,et al.  Measurements and modeling of explosive vapor diffusion in snow , 2000, Defense, Security, and Sensing.

[11]  Marc A. Ressler,et al.  Unexploded ordnance detection experiments at extensive fully ground-truthed test sites at Yuma Proving Ground and Eglin AFB , 1999, Defense, Security, and Sensing.

[12]  David A. Robinson,et al.  Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: comparison, including the effects of bulk soil electrical conductivity , 1999 .

[13]  B. Brisco,et al.  Soil moisture measurement using portable dielectric probes and time domain reflectometry , 1992 .

[14]  J. R. Lockwood,et al.  Alternatives for landmine detection , 2003 .

[15]  Johan Bouma,et al.  Using Soil Survey Data for Quantitative Land Evaluation , 1989 .

[16]  Fawwaz T. Ulaby,et al.  Dielectric properties of soils in the 0.3-1.3-GHz range , 1995, IEEE Trans. Geosci. Remote. Sens..

[17]  Jan M. H. Hendrickx,et al.  Modeling distributions of water and dielectric constants around land mines in homogeneous soils , 1999, Defense, Security, and Sensing.

[18]  L. Peters,et al.  Ground penetrating radar as a subsurface environmental sensing tool , 1994, Proc. IEEE.

[19]  Gerrit H. de Rooij,et al.  Methods of Soil Analysis. Part 4. Physical Methods , 2004 .

[20]  A. P. Annan,et al.  Electromagnetic determination of soil water content: Measurements in coaxial transmission lines , 1980 .

[21]  Leslie M. Collins,et al.  A comparison of the performance of statistical and fuzzy algorithms for unexploded ordnance detection , 2001, IEEE Trans. Fuzzy Syst..

[22]  Jan M. H. Hendrickx,et al.  Soil effects on thermal signatures of buried nonmetallic landmines , 2003, SPIE Defense + Commercial Sensing.

[23]  Wen Li,et al.  Microwave-enhanced infrared thermography , 1999, Defense, Security, and Sensing.

[24]  Shmulik P. Friedman,et al.  Effect of particle size distribution on the effective dielectric permittivity of saturated granular media , 2001 .

[25]  Lawrence A. Klein,et al.  Sensor and Data Fusion Concepts and Applications , 1993 .

[26]  Brian A. Baertlein,et al.  Fused performance of passive thermal and active polarimetric EO demining sensor , 2002, SPIE Defense + Commercial Sensing.

[27]  Johan Alexander Huisman,et al.  Iron oxides as a cause of GPR reflections , 2002 .

[28]  Gary R. Olhoeft,et al.  COMPUTER MODELING TO TRANSFER GPR UXO DETECTABILITY KNOWLEDGE BETWEEN SITES , 1996 .

[29]  Edwin M. Winter,et al.  Phenomenology considerations for hyperspectral mine detection , 1995, Defense, Security, and Sensing.

[30]  R. Plagge,et al.  Empirical evaluation of the relationship between soil dielectric constant and volumetric water conte , 1992 .

[31]  Jan M. H. Hendrickx,et al.  Spatial variability of dielectric properties in field soils , 2001, SPIE Defense + Commercial Sensing.

[32]  Jan M. H. Hendrickx,et al.  Enhancing dielectric contrast between land mines and the soil environment by watering: modeling, design, and experimental results , 2000, Defense, Security, and Sensing.

[33]  J Deane,et al.  International Pilot Project for Technology Cooperation. Consumer Report. A Multi-National Technical Evaluation of Performance of Commercial off the Shelf Metal Detectors in the Context of Humanitarian Demining. , 2001 .

[34]  Mary S. Lear,et al.  Spatial distribution of soil moisture over 6 and 30 cm depth, Mahurangi river catchment, New Zealand , 2003 .

[35]  W. R. V. Wijk,et al.  Physics of Plant Environment , 1964 .

[36]  G. Topp,et al.  Measurement of Soil Water Content using Time‐domain Reflectrometry (TDR): A Field Evaluation , 1985 .

[37]  Harold Tobin,et al.  Soil effects on ground penetrating radar detection of buried nonmetallic mines , 2003 .

[38]  Remke L. Van Dam,et al.  Identifying causes of ground‐penetrating radar reflections using time‐domain reflectometry and sedimentological analyses , 2000 .

[39]  Scott L. Grossman,et al.  Study of explosive residues found above buried landmines , 2003, SPIE Defense + Commercial Sensing.

[40]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Cisr Journal Norwegian People's Aid , 1999 .

[42]  L. Carin,et al.  Ultra-wide-band synthetic-aperture radar for mine-field detection , 1999 .

[43]  James M. Phelan,et al.  Effect of weather on landmine chemical signatures for different climates , 2003, SPIE Defense + Commercial Sensing.

[44]  Willem Bouten,et al.  Assessing temporal variations in soil water composition with time domain reflectometry , 1995 .

[45]  Jan M. H. Hendrickx,et al.  Boundary location from texture, soil moisture, and infiltration data , 1986 .

[46]  R. V. Dam,et al.  Influence of Organic Matter in Soils on Radar-Wave Reflection: Sedimentological Implications , 2002 .

[47]  Leonard R. Pasion,et al.  Evaluating the Effects of Magnetic Susceptibility in UXO Discrimination Problems (SERDP SEED Project UX-1285) , 2003 .

[48]  Kambiz Vafai,et al.  Thermal analysis of buried land mines over a diurnal cycle , 2002, IEEE Trans. Geosci. Remote. Sens..

[49]  Jan M. H. Hendrickx,et al.  Conceptual model for prediction of magnetic properties in tropical soils , 2005, SPIE Defense + Commercial Sensing.

[50]  Steven A. Arcone,et al.  Radar detection of simulant mines buried in frozen ground , 1999, Defense, Security, and Sensing.

[51]  P. Buringh,et al.  Some techniques and method of soil survey in the Netherlands , 1962 .

[52]  Remke L. van Dam,et al.  Spatial variability of magnetic soil properties , 2004, SPIE Defense + Commercial Sensing.

[53]  Jan M. H. Hendrickx,et al.  MODELING TRANSIENT WATER DISTRIBUTIONS AROUND LANDMINES IN BARE SOILS , 2001 .

[54]  Jan M. H. Hendrickx,et al.  Soil Salinity Assessment by Electromagnetic Induction of Irrigated Land , 1992 .

[55]  Brian A. Baertlein,et al.  Feature-Level and Decision-Level Fusion of Noncoincidently Sampled Sensors for Land Mine Detection , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Hans-Jörg Vogel,et al.  A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models , 2000 .

[57]  Henk A. Lensen,et al.  Worldwide distribution of soil dielectric and thermal properties , 2003, SPIE Defense + Commercial Sensing.

[58]  Pascal Vasseur,et al.  Introduction to Multisensor Data Fusion , 2005, The Industrial Information Technology Handbook.

[59]  J Deans,et al.  An analysis of a thermal imaging method for landmine detection using microwave heating , 2001 .

[60]  Jan M. H. Hendrickx,et al.  Magnetic soil properties in Ghana , 2005, SPIE Defense + Commercial Sensing.

[61]  John L. Nieber,et al.  Physics of water repellent soils , 2000 .

[62]  Abinash C. Dubey,et al.  Detection and Remediation Technologies for Mines and Minelike Targets II , 1997 .

[63]  James M. Phelan,et al.  Effect of soil wetting and drying on DNT vapor flux: laboratory data and T2TNT model comparisons , 2001, SPIE Defense + Commercial Sensing.

[64]  Lam H. Nguyen,et al.  Mine detection performance in different soil conditions using data from an ultrawideband wide-area surveillance radar , 1999, Defense, Security, and Sensing.

[65]  James M. Phelan,et al.  Effect of diurnal and seasonal weather variations on the chemical signatures from buried land mines/UXO , 2000, Defense, Security, and Sensing.

[66]  Hilda I. Aponte,et al.  Multisensor fusion for vehicle-mounted mine detection , 2001, SPIE Defense + Commercial Sensing.

[67]  Mark Fisher,et al.  Minefield edge detection using a novel chemical vapor sensing technique , 2003, SPIE Defense + Commercial Sensing.

[68]  Dwain K. Butler,et al.  Implications of magnetic backgrounds for unexploded ordnance detection , 2003 .

[69]  Jan M. H. Hendrickx,et al.  Variability of magnetic soil properties in Hawaii , 2005, SPIE Defense + Commercial Sensing.

[70]  John O. Curtis,et al.  Moisture effects on the dielectric properties of soils , 2001, IEEE Trans. Geosci. Remote. Sens..

[71]  Isabelle Bloch,et al.  Detection of low-metal content objects by evidential fusion of mine detection sensors , 2003, Integr. Comput. Aided Eng..

[72]  W. A. Wensink,et al.  Dielectric Properties of Wet Soils in the Frequency Range 1-3000 MHz1 , 1993 .

[73]  D. S. Fanning,et al.  Acid Sulphate Soils: A Baseline for Research and Development , 1988 .

[74]  Alan C. Tripp,et al.  The great chemical residue detection debate: dog versus machine , 2003, SPIE Defense + Commercial Sensing.

[75]  James M. Phelan,et al.  Laboratory data and model comparisons of the transport of chemical signatures from buried land mines/UXO , 2000, Defense, Security, and Sensing.

[76]  Yogadhish Das,et al.  Soil information requirements for humanitarian demining: the case for a soil properties database , 2003, SPIE Defense + Commercial Sensing.

[77]  Waldemar Swiderski,et al.  Buried mine and soil temperature prediction by numerical model , 2000, Defense, Security, and Sensing.

[78]  Joel T. Johnson,et al.  Soil modification studies for enhanced mine detection with ground-penetrating radar , 1999, Defense, Security, and Sensing.

[79]  Ibrahim K. Sendur,et al.  Role of environmental factors and mine geometry in thermal IR mine signatures , 2001, SPIE Defense + Commercial Sensing.

[80]  James M. Phelan,et al.  Progress on determining the vapor signature of a buried land mine , 1999, Defense, Security, and Sensing.

[81]  Charles A. DiMarzio,et al.  Effects of surface roughness on microwave heating of soil for detection of buried land mines , 2000, Defense, Security, and Sensing.

[82]  Sterling A. Taylor,et al.  Heat Capacity and Specific Heat , 2018, SSSA Book Series.

[83]  G. T. Burstein The iron oxides: Structure, properties, reactions, occurrence and uses , 1997 .

[84]  Christian Roth,et al.  Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil , 1996 .

[85]  Ian J. Chant,et al.  Microwave enhancement of thermal land mine signatures , 1999, Defense, Security, and Sensing.

[86]  Anh H. Trang Simulation of mine detection over dry soil, snow, ice, and water , 1996, Defense, Security, and Sensing.

[87]  Charles H. Dowding,et al.  Time Domain Reflectometry in Environmental, Infrastructure, and Mining Applications , 1994 .

[88]  P. Wierenga,et al.  Variability of soil water tension in a trickle irrigated Chile pepper field , 2004, Irrigation Science.

[89]  Brian A. Baertlein,et al.  Fusion of acoustic LDV and GPR data , 2001, SPIE Defense + Commercial Sensing.

[90]  Jeffrey P. Walker,et al.  A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index , 2001, IEEE Trans. Geosci. Remote. Sens..

[91]  C. Ratcliffe,et al.  Interactions between peat and sodium acetate, ammonium sulphate urea or wheat straw during incubation studied by 13C and 15N NMR spectroscopy , 1992 .

[92]  James M. Phelan,et al.  Data-model comparison of field landmine soil chemical signatures at Ft. Leonard Wood , 2003, SPIE Defense + Commercial Sensing.

[93]  Peter Howard,et al.  Performance results of the EG&G vehicle-mounted mine detector , 1999, Defense, Security, and Sensing.

[94]  Ann H. Kjellstrom,et al.  Analysis of TNT and related compounds in vapor and solid phase in different types of soil , 2000, Defense, Security, and Sensing.

[95]  P. Wierenga,et al.  SPATIAL VARIABILITY OF SOIL WATER TENSION IN AN IRRIGATED SOIL , 1985 .

[96]  Brian Borchers,et al.  Modeling transient temperature distributions around landmines in homogenous bare soils , 2001, SPIE Defense + Commercial Sensing.

[97]  Thomas J Jackson EFFECTS OF SOIL PROPERTIES ON MICROWAVE DIELECTRIC CONSTANTS , 1987 .

[98]  Jean-Robert Simard,et al.  Improved landmine detection capability (ILDC): systematic approach to the detection of buried mines using passive IR imaging , 1996, Defense, Security, and Sensing.

[99]  Jesper Storm,et al.  Detection of buried land mines facilitated by actively provoked IR signature , 1999, Defense, Security, and Sensing.

[100]  Belur V. Dasarathy,et al.  Decision fusion benefits assessment in a three-sensor suite framework , 1998 .

[101]  Willem Bouten,et al.  Frequency domain analysis of time domain reflectometry waveforms: 2. A four‐component complex dielectric mixing model for soils , 1994 .

[102]  Joel T. Johnson,et al.  An analytical model for studies of soil modification effects on ground penetrating radar , 2001 .

[103]  L. Carin,et al.  Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium , 1999 .

[104]  John O. Curtis,et al.  Effect of Soil Composition on Complex Dielectric Properties. , 1995 .

[105]  J. Foley,et al.  The influence of magnetic viscosity on electromagnetic sensors , 2003 .

[106]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .