Global bifurcations of a periodically forced nonlinear oscillator

The effects of periodic pulsatile stimulation on a simple mathematical model of biological oscillations, called the radial isochron clock (RIC), are investigated as a function of stimulus frequency and amplitude. This system can be reduced to a two parameter, one-dimensional circle map. Numerical and topological methods are used to give a very detailed picture of the observed bifurcations over the complete range of parameters. The bifurcations are generic for a class of models which generalize the RIC.

[1]  Arthur T. Winfree Resetting biological clocks , 1975 .

[2]  Nicholas C. Metropolis,et al.  On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.

[3]  K. Tomita,et al.  Chaotic Behaviour of Deterministic Orbits: The Problem of Turbulent Phase , 1978 .

[4]  J. Sethna,et al.  Universal Transition from Quasiperiodicity to Chaos in Dissipative Systems , 1982 .

[5]  J Honerkamp,et al.  The heart as a system of coupled nonlinear oscillators , 1983, Journal of mathematical biology.

[6]  Raymond Kapral,et al.  Subharmonic and chaotic bifurcation structure in optical bistability , 1983 .

[7]  L. Glass,et al.  UNIVERSALITY AND SELF-SIMILARITY IN THE BIFURCATIONS OF CIRCLE MAPS , 1985 .

[8]  A. Winfree Phase control of neural pacemakers. , 1977, Science.

[9]  Diego L. González,et al.  Chaos in a Nonlinear Driven Oscillator with Exact Solution , 1983 .

[10]  R. Pérez,et al.  Bifurcation and chaos in a periodically stimulated cardiac oscillator , 1983 .

[11]  R. Kapral Analysis of flow hysteresis by a one-dimensional map , 1982 .

[12]  J. Guckenheimer Sensitive dependence to initial conditions for one dimensional maps , 1979 .

[13]  O. Piro,et al.  One-dimensional poincare map for a non-linear driven oscillator: Analytical derivation and geometrical properties , 1984 .

[14]  L. Glass,et al.  Global bifurcations of a periodically forced biological oscillator , 1984 .

[15]  G. P. Moore,et al.  Pacemaker Neurons: Effects of Regularly Spaced Synaptic Input , 1964, Science.

[16]  M. R. Herman,et al.  Mesure de Lebesgue et Nombre de Rotation , 1977 .

[17]  James P. Keener,et al.  On cardiac arrythmias: AV conduction block , 1981 .

[18]  James P. Sethna,et al.  Universal properties of the transition from quasi-periodicity to chaos , 1983 .

[19]  R. Kapral Universal vector scaling in one-dimensional maps , 1984 .

[20]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[21]  L Glass,et al.  Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias , 1982, Journal of mathematical biology.

[22]  H. Pinsker Aplysia bursting neurons as endogenous oscillators. II. Synchronization and entrainment by pulsed inhibitory synaptic input. , 1977, Journal of neurophysiology.

[23]  John Guckenheimer,et al.  Symbolic dynamics and relaxation oscillations , 1980 .

[24]  Raymond Kapral,et al.  Subharmonic bifurcation in the sine map: An infinite hierarchy of cusp bistabilities , 1983 .

[25]  L. Glass,et al.  Self-similarity in periodically forced oscillators , 1983 .

[26]  L. Glass,et al.  Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. , 1981, Science.

[27]  J. Keener,et al.  Phase locking of biological clocks , 1982, Journal of mathematical biology.

[28]  A. Winfree The geometry of biological time , 1991 .

[29]  E. Lorenz The problem of deducing the climate from the governing equations , 1964 .

[30]  J Jalife,et al.  A Mathematical Model of Parasystole and its Application to Clinical Arrhythmias , 1977, Circulation.

[31]  D. Ypey,et al.  Synchronization of Cardiac Pacemaker Cells by Electrical Coupling , 1982 .

[32]  R. Pérez,et al.  Fine Structure of Phase Locking , 1982 .

[33]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[34]  S. Shenker,et al.  Quasiperiodicity in dissipative systems: A renormalization group analysis , 1983 .

[35]  M. Wortis,et al.  Iterative properties of a one-dimensional quartic map: Critical lines and tricritical behavior , 1981 .

[36]  Theodosios Pavlidis,et al.  Biological Oscillators: Their Mathematical Analysis , 1973 .