Biological measurement beyond the quantum limit

Quantum metrology allows high sensitivity measurements to proceed with a lower light intensity than classically possible [1]. An important frontier for this technology is in biological measurements, where photochemical interactions often disturb biological processes and can damage the specimen [2]. Here we report the first demonstration of biological measurement with precision surpassing the quantum noise limit [3]. This was enabled through the development of a new microscopy system which extended previous methods used to track the motion of highly reflective mirrors with non-classical light to measurements of microscopic particles with non-paraxial fields (see Fig. 1). Biological dynamics in the critical Hz-kHz frequency range were made accessible by applying a quantum optical lock-in technique for the first time. This straightforward technique allowed quantum enhancement over a frequency range which reached as low as the range reported for squeezed light sources developed for gravity wave interferometers [4].

[1]  W. Greenleaf,et al.  Single-Molecule, Motion-Based DNA Sequencing Using RNA Polymerase , 2006, Science.

[2]  E. Florin,et al.  Direct observation of nondiffusive motion of a Brownian particle. , 2005, Physical review letters.

[3]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[4]  F. MacKintosh,et al.  High-frequency microrheology of wormlike micelles. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[6]  D. Wirtz,et al.  Mechanics of living cells measured by laser tracking microrheology. , 2000, Biophysical journal.

[7]  E. Florin,et al.  Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid , 2011 .

[8]  W. Bowen,et al.  Quantum limited particle sensing in optical tweezers , 2009, 0907.4198.

[9]  Roberta Ramponi,et al.  Measuring protein concentration with entangled photons , 2011, 1109.3128.

[10]  Pernille Yde,et al.  Variety in intracellular diffusion during the cell cycle , 2009, Physical biology.

[11]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[12]  J. Gorkom,et al.  Two remarkable bright supernova remnants , 1985, Nature.

[13]  Nicolas Treps,et al.  A Quantum Laser Pointer , 2003, Science.

[14]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[15]  Kirk McKenzie,et al.  Squeezing in the audio gravitational-wave detection band. , 2004, Physical review letters.

[16]  Guoxin Rong,et al.  Quantum optical coherence tomography of a biological sample , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[17]  L. Forró,et al.  Resonances arising from hydrodynamic memory in Brownian motion , 2011, Nature.

[18]  E. Florin,et al.  Development of a fast position-sensitive laser beam detector. , 2008, The Review of scientific instruments.

[19]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[20]  A. Marcus,et al.  Actin polymerization driven mitochondrial transport in mating S. cerevisiae , 2009, Proceedings of the National Academy of Sciences.

[21]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.

[22]  Kolobov,et al.  Quantum limits on optical resolution , 2000, Physical review letters.

[23]  D. E. Chang,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.

[24]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[25]  G. Brida,et al.  Experimental realization of sub-shot-noise quantum imaging , 2010 .

[26]  I. Tolic-Nørrelykke,et al.  Anomalous diffusion in living yeast cells. , 2004, Physical review letters.

[27]  Alessandro Cerè,et al.  Squeezed-light optical magnetometry. , 2010, Physical review letters.

[28]  Konrad Lehnert,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004 .

[29]  Carlos Bustamante,et al.  Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics , 2005, Quarterly Reviews of Biophysics.

[30]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2013 .

[31]  Thomas G. Mason,et al.  Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation , 2000 .

[32]  M. N. Shneider,et al.  Cavity cooling of an optically trapped nanoparticle , 2009, 0910.1221.

[33]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[34]  Fabrice Mortessagne,et al.  Equilibrium and Non-Equilibrium Statistical Thermodynamics , 2004 .

[35]  P. Zoller,et al.  Cavity-assisted squeezing of a mechanical oscillator , 2009, 0904.1306.

[36]  W. P. Bowen,et al.  Sagnac interferometer-enhanced particle tracking in optical tweezers , 2010, 1006.0777.

[37]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[38]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[39]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[40]  B. Yurke,et al.  Squeezed-state enhanced two-frequency interferometry , 1987 .