The B73 Maize Genome: Complexity, Diversity, and Dynamics

A-Maize-ing Maize is one of our oldest and most important crops, having been domesticated approximately 9000 years ago in central Mexico. Schnable et al. (p. 1112; see the cover) present the results of sequencing the B73 inbred maize line. The findings elucidate how maize became diploid after an ancestral doubling of its chromosomes and reveals transposable element movement and activity and recombination. Vielle-Calzada et al. (p. 1078) have sequenced the Palomero Toluqueño (Palomero) landrace, a highland popcorn from Mexico, which, when compared to the B73 line, reveals multiple loci impacted by domestication. Swanson-Wagner et al. (p. 1118) exploit possession of the genome to analyze expression differences occurring between lines. The identification of single nucleotide polymorphisms and copy number variations among lines was used by Gore et al. (p. 1115) to generate a Haplotype map of maize. While chromosomal diversity in maize is high, it is likely that recombination is the major force affecting the levels of heterozygosity in maize. The availability of the maize genome will help to guide future agricultural and biofuel applications (see the Perspective by Feuillet and Eversole). The sequence of the maize genome reveals it to be the most complex genome known to date. We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.

Dawn H. Nagel | Kevin L. Schneider | Thomas K. Wolfgruber | Nathan M. Springer | Bryan W. Penning | M. Waterman | T. Graves | R. Wilson | S. Rock | L. Fulton | R. Fulton | J. Bennetzen | S. Wessler | R. Abbott | A. Chinwalla | S. Pasternak | D. Schwartz | Sanzhen Liu | Cheng-Ting Yeh | P. Schnable | L. Ponnala | S. Clifton | C. Fronick | J. Hodges | Feiyu Du | P. Minx | W. McCombie | R. Martienssen | K. Kanchi | A. Narechania | Jer-Ming Chia | Kimberley D. Delehaunty | S. Zhou | D. Nettleton | S. Aluru | G. Presting | R. Wing | Yeisoo Yu | Yujun Han | Hao Wang | Hyeran Kim | Jiming Jiang | Liya Ren | J. Stein | D. Ware | Qihui Zhu | M. Cordes | D. Kudrna | A. Reily | Lixing Yang | L. Courtney | S. Leonard | R. Westerman | Chad Tomlinson | C. Soderlund | F. Wei | M. Vaughn | A. Kalyanaraman | L. McMahan | J. Jeddeloh | Chengzhi Liang | N. Jiang | Jianwei Zhang | Scott S. Kruchowski | C. Strong | B. Courtney | E. Belter | Kyung Kim | M. Cotton | Andy Levy | P. Marchetto | K. Ochoa | S. M. Jackson | B. Gillam | Wei-zu Chen | L. Yan | Jamey Higginbotham | M. Cardenas | Jason E. Waligorski | Elizabeth Applebaum | L. Phelps | J. Falcone | T. Thane | A. Scimone | Nay Thane | J. Henke | Tom Wang | J. Ruppert | Neha Shah | Kelsi Rotter | Elizabeth Ingenthron | Sara Kohlberg | Jennifer Sgro | Brandon Delgado | Kelly Mead | Kevin Crouse | K. Collura | J. Currie | R. He | A. Angelova | Shanmugam Rajasekar | T. Mueller | Rene Lomeli | Gabriel Scara | A. Ko | Krista Delaney | Marina Wissotski | G. López | D. Campos | Michele Braidotti | Elizabeth Ashley | W. Golser | Seunghee Lee | Jinke Lin | Zeljko Dujmic | Woojin Kim | J. Talag | A. Zuccolo | C. Fan | A. Sebastian | M. Kramer | L. Spiegel | Lidia U Nascimento | T. Zutavern | B. Miller | Claude Ambroise | S. Muller | W. Spooner | Sharon Wei | Sunita Kumari | B. Faga | Michael J. Levy | Peter Van Buren | Kai Ying | S. Emrich | Yi Jia | A. Hsia | W. Barbazuk | R. Baucom | T. Brutnell | N. Carpita | C. Chaparro | J. Deragon | J. Estill | Yan Fu | Hyeran Lee | Pinghua Li | D. Lisch | Zhijie Liu | M. McCann | P. SanMiguel | A. Myers | John Nguyen | Anupma Sharma | N. Springer | Qi Sun | Lifang Zhang | R. Dawe | Weizu Chen | Kerri Ochoa | Ning Jiang | Shiguo Zhou | C. Yeh | Ruifeng He | Chuanzhu Fan | Theresa Zutavern | R. Wilson | Fusheng Wei | Ruifeng He | An-Ping Hsia | W. B. Barbazuk | Tina Graves | Lidia U. Nascimento

[1]  J. Jurka,et al.  Rolling-circle transposons in eukaryotes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  AC Tose Cell , 1993, Cell.

[3]  These authors contributed equally to this work. , 2007 .

[4]  G. Presting,et al.  Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity , 2008, Molecular Genetics and Genomics.

[5]  L. Stein,et al.  Evidence-based gene predictions in plant genomes. , 2009, Genome research.

[6]  B. Mcclintock,et al.  Chromosome organization and genic expression. , 1951, Cold Spring Harbor symposia on quantitative biology.

[7]  Wen-Hsiung Li,et al.  Lowly expressed human microRNA genes evolve rapidly. , 2009, Molecular biology and evolution.

[8]  J. Bennetzen,et al.  Structure-based discovery and description of plant and animal Helitrons , 2009, Proceedings of the National Academy of Sciences.

[9]  Bruce D. Smith,et al.  The Molecular Genetics of Crop Domestication , 2006, Cell.

[10]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[11]  Hossein Baharvand,et al.  Genetics and genomics , 1998, Nature.

[12]  Kevin L. Schneider,et al.  Sustained retrotransposition is mediated by nucleotide deletions and interelement recombinations , 2008, Proceedings of the National Academy of Sciences.

[13]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[14]  D. Duvick How Much Caution in the Fields? , 1999, Science.

[15]  Guillaume Blanc,et al.  Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes , 2004, The Plant Cell Online.

[16]  J. Bouck,et al.  Insights into corn genes derived from large-scale cDNA sequencing , 2008, Plant Molecular Biology.

[17]  P. Lu,et al.  Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Sarah Hake,et al.  Handbook of Maize , 2009 .

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  Srinivas Aluru,et al.  Quality assessment of maize assembled genomic islands (MAGIs) and large-scale experimental verification of predicted genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Lisch Epigenetic regulation of transposable elements in plants. , 2009, Annual review of plant biology.

[22]  Cathal Seoighe,et al.  Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. , 2004, Trends in genetics : TIG.

[23]  B. Birren,et al.  Structure and Architecture of the Maize Genome1[W] , 2005, Plant Physiology.

[24]  Mingsheng Chen,et al.  Evidence for an ancient whole-genome duplication event in rice and other cereals. , 2005, Yi chuan xue bao = Acta genetica Sinica.

[25]  Jianxin Ma,et al.  Close split of sorghum and maize genome progenitors. , 2004, Genome research.

[26]  J. Bennetzen,et al.  Handbook of maize : genetics and genomics , 2009 .

[27]  Brian C. Thomas,et al.  Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. , 2006, Genome research.

[28]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[29]  A. F. Troyer Adaptedness and heterosis in corn and mule hybrids , 2006 .

[30]  Cédric Feschotte,et al.  Plant transposable elements: where genetics meets genomics , 2002, Nature Reviews Genetics.

[31]  M. Feldman,et al.  Sequence Elimination and Cytosine Methylation Are Rapid and Reproducible Responses of the Genome to Wide Hybridization and Allopolyploidy in Wheat , 2001, The Plant Cell Online.

[32]  S. Dike,et al.  Maize Genome Sequencing by Methylation Filtration , 2003, Science.

[33]  C. Topp,et al.  Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3 , 2002, The Plant Cell Online.

[34]  Jiming Jiang,et al.  Epigenetic Modification of Centromeric Chromatin: Hypomethylation of DNA Sequences in the CENH3-Associated Chromatin in Arabidopsis thaliana and Maize[W][OA] , 2008, The Plant Cell Online.

[35]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[36]  J. Botto,et al.  The plant cell , 2007, Plant Molecular Biology Reporter.

[37]  D. Ashlock,et al.  Nearly Identical Paralogs: Implications for Maize (Zea mays L.) Genome Evolution , 2007, Genetics.

[38]  Steven G. Schroeder,et al.  Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History , 2007, PLoS genetics.

[39]  D. Soltis,et al.  On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae) , 2009, BMC Plant Biology.

[40]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[41]  B. Mcclintock CHROMOSOME MORPHOLOGY IN ZEA MAYS. , 1929, Science.

[42]  A. Paterson,et al.  Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Joshua P. White,et al.  An RNA-dependent RNA polymerase is required for paramutation in maize , 2006, Nature.