Novel Ocellatin Peptides Mitigate LPS-induced ROS Formation and NF-kB Activation in Microglia and Hippocampal Neurons

[1]  Mark Wilkinson,et al.  Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity , 2019, Science.

[2]  S. Salvidio,et al.  Peptides for Skin Protection and Healing in Amphibians , 2019, Molecules.

[3]  C. Scavone,et al.  Ouabain attenuates oxidative stress and modulates lipid composition in hippocampus of rats in lipopolysaccharide‐induced hypocampal neuroinflammation in rats , 2018, Journal of cellular biochemistry.

[4]  R. Lai,et al.  The defensive system of tree frog skin identified by peptidomics and RNA sequencing analysis , 2018, Amino Acids.

[5]  M. Khaksari,et al.  Crocin Inhibits Apoptosis and Astrogliosis of Hippocampus Neurons Against Methamphetamine Neurotoxicity via Antioxidant and Anti-inflammatory Mechanisms , 2018, Neurochemical Research.

[6]  M. Oh,et al.  Piperlongumine inhibits neuroinflammation via regulating NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. , 2018, Journal of pharmacological sciences.

[7]  N. Lopes,et al.  Cleavage of Peptides from Amphibian Skin Revealed by Combining Analysis of Gland Secretion and in Situ MALDI Imaging Mass Spectrometry , 2018, ACS omega.

[8]  S. McFarlane,et al.  Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light‐mediated skin pigmentation , 2018, Pigment cell & melanoma research.

[9]  T. van der Poll,et al.  Microglial Activation After Systemic Stimulation With Lipopolysaccharide and Escherichia coli , 2018, Front. Cell. Neurosci..

[10]  C. Delerue-Matos,et al.  Structure and function of a novel antioxidant peptide from the skin of tropical frogs , 2018, Free radical biology & medicine.

[11]  Ying Wang,et al.  Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing , 2018, Scientific Reports.

[12]  B. Shi,et al.  Antioxidant activity in vivo and biological safety evaluation of a novel antioxidant peptide from bovine hair hydrolysates , 2017 .

[13]  R. Minshall,et al.  Caveolin-1–mediated internalization of the vitamin C transporter SVCT2 in microglia triggers an inflammatory phenotype , 2017, Science Signaling.

[14]  J. Relvas,et al.  Dopamine promotes NMDA receptor hypofunction in the retina through D1 receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation , 2017, Scientific Reports.

[15]  C. Delerue-Matos,et al.  Ocellatin‐PT antimicrobial peptides: High‐resolution microscopy studies in antileishmania models and interactions with mimetic membrane systems , 2016, Biopolymers.

[16]  Ernest Giralt,et al.  Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. , 2016, Chemical Society reviews.

[17]  Daria M. Shcherbakova,et al.  Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging , 2016, Nature Communications.

[18]  Emanuel Airton de Oliveira Farias,et al.  Immobilization of cationic antimicrobial peptides and natural cashew gum in nanosheet systems for the investigation of anti-leishmanial activity. , 2016, Materials science & engineering. C, Materials for biological applications.

[19]  M. Mura,et al.  The effect of amidation on the behaviour of antimicrobial peptides , 2016, European Biophysics Journal.

[20]  C. Delerue-Matos,et al.  Characterization and Biological Activities of Ocellatin Peptides from the Skin Secretion of the Frog Leptodactylus pustulatus. , 2015, Journal of natural products.

[21]  M. Mura,et al.  The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. , 2015, Biochimica et biophysica acta.

[22]  Weiying Jiang,et al.  Changes in red blood cell membrane structure in G6PD deficiency: an atomic force microscopy study. , 2015, Clinica chimica acta; international journal of clinical chemistry.

[23]  J. Relvas,et al.  c-Src deactivation by the polyphenol 3-O-caffeoylquinic acid abrogates reactive oxygen species-mediated glutamate release from microglia and neuronal excitotoxicity. , 2015, Free radical biology & medicine.

[24]  R. Lai,et al.  The chemistry and biological activities of peptides from amphibian skin secretions. , 2015, Chemical reviews.

[25]  B. Polster,et al.  NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? , 2014, Free radical biology & medicine.

[26]  Grigori Enikolopov,et al.  Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide , 2014, Nature Communications.

[27]  N. Žarković,et al.  Redox control of microglial function: molecular mechanisms and functional significance. , 2014, Antioxidants & redox signaling.

[28]  Jing Li,et al.  Identification of multiple peptides with antioxidant and antimicrobial activities from skin and its secretions of Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus. , 2014, Biochimie.

[29]  R. M. Freitas,et al.  Is There a Correlation Between In Vitro Antioxidant Potential and In Vivo Effect of Carvacryl Acetate Against Oxidative Stress in Mice Hippocampus? , 2014, Neurochemical Research.

[30]  R. M. Freitas,et al.  Potential antioxidant and anxiolytic effects of (+)-limonene epoxide in mice after marble-burying test , 2014, Pharmacology Biochemistry and Behavior.

[31]  L. Coelho,et al.  Evaluation of Cytotoxic and Anti-Inflammatory Activities of Extracts and Lectins from Moringa oleifera Seeds , 2013, PloS one.

[32]  P. Płonka,et al.  Pheomelanin in the skin of Hymenochirus boettgeri (Amphibia: Anura: Pipidae) , 2012, Experimental dermatology.

[33]  Jingze Liu,et al.  Host defense peptides in skin secretions of Odorrana tiannanensis: Proof for other survival strategy of the frog than merely anti-microbial. , 2012, Biochimie.

[34]  X. Jiao,et al.  Hainanenins: A novel family of antimicrobial peptides with strong activity from Hainan cascade-frog, Amolops hainanensis , 2012, Peptides.

[35]  Hailong Yang,et al.  Frog skins keep redox homeostasis by antioxidant peptides with rapid radical scavenging ability. , 2010, Free radical biology & medicine.

[36]  C. Bloch,et al.  Leptodactylus ocellatus (Amphibia): mechanism of defense in the skin and molecular phylogenetic relationships. , 2010, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[37]  Yizheng Wang,et al.  Antioxidant Peptidomics Reveals Novel Skin Antioxidant System*S , 2009, Molecular & Cellular Proteomics.

[38]  J. Nicoli,et al.  Post-secretory events alter the peptide content of the skin secretion of Hypsiboas raniceps. , 2008, Biochemical and biophysical research communications.

[39]  H. Vaudry,et al.  Purification and characterization of antimicrobial peptides from the Caribbean frog, Leptodactylus validus (Anura: Leptodactylidae) , 2008, Peptides.

[40]  M. Block,et al.  Chronic microglial activation and progressive dopaminergic neurotoxicity. , 2007, Biochemical Society transactions.

[41]  C. Bloch,et al.  Antimicrobial peptide from the skin secretion of the frog Leptodactylus syphax. , 2007, Toxicon : official journal of the International Society on Toxinology.

[42]  A. Ulrich,et al.  Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides , 2007 .

[43]  P. F. Nielsen,et al.  Purification and properties of laticeptin, an antimicrobial peptide from skin secretions of the South American frog Leptodactylus laticeps. , 2006, Protein and peptide letters.

[44]  W. Heyer Variation and taxonomic clarification of the large species of the Leptodactylus pentadactylus species group (Amphibia: Leptodactylidae) from Middle America, Northern South America, and Amazonia , 2005 .

[45]  P. F. Nielsen,et al.  Characterization of a peptide from skin secretions of male specimens of the frog, Leptodactylus fallax that stimulates aggression in male frogs , 2005, Peptides.

[46]  P. F. Nielsen,et al.  An antimicrobial peptide from the skin secretions of the mountain chicken frog Leptodactylus fallax (Anura:Leptodactylidae) , 2005, Regulatory Peptides.

[47]  M. V. Sousa,et al.  Ocellatins: New Antimicrobial Peptides from the Skin Secretion of the South American Frog Leptodactylus ocellatus (Anura: Leptodactylidae) , 2004, The protein journal.

[48]  Y. Lyubchenko An Atomic Force Microscopy Study , 2004 .

[49]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[50]  K. Mikoshiba,et al.  A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications , 2002, Nature Biotechnology.

[51]  N. Sreerama,et al.  Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. , 2000, Analytical biochemistry.

[52]  L. Samanta,et al.  A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals , 2000 .

[53]  K. H. Ng,et al.  Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen , 1995, Neuroscience Letters.

[54]  G. Bignami A rapid and sensitive hemolysis neutralization assay for palytoxin. , 1993, Toxicon : official journal of the International Society on Toxinology.

[55]  S. Tannenbaum,et al.  Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. , 1982, Analytical biochemistry.

[56]  M. Uchiyama,et al.  Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. , 1978, Analytical biochemistry.

[57]  J. Sedlák,et al.  Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. , 1968, Analytical biochemistry.