Big data analytics for personalized medicine.

[1]  M. Papadopoulos,et al.  Targeted Perfusion Therapy in Spinal Cord Trauma , 2020, Neurotherapeutics.

[2]  J. Loscalzo,et al.  The application of big data to cardiovascular disease: paths to precision medicine. , 2020, The Journal of clinical investigation.

[3]  H. U. Zacharias,et al.  A multi-source data integration approach reveals novel associations between metabolites and renal outcomes in the German Chronic Kidney Disease study , 2019, Scientific Reports.

[4]  G. Warren Mitigating the adverse health effects and costs associated with smoking after a cancer diagnosis. , 2019, Translational lung cancer research.

[5]  Eric J Topol,et al.  High-performance medicine: the convergence of human and artificial intelligence , 2019, Nature Medicine.

[6]  Christopher Ré,et al.  Snorkel: Rapid Training Data Creation with Weak Supervision , 2017, Proc. VLDB Endow..

[7]  Rishikesan Kamaleswaran,et al.  PhysOnline: An Open Source Machine Learning Pipeline for Real-Time Analysis of Streaming Physiological Waveform , 2019, IEEE Journal of Biomedical and Health Informatics.

[8]  Arpan Kumar Kar,et al.  Big data with cognitive computing: A review for the future , 2018, Int. J. Inf. Manag..

[9]  Claude Thermes,et al.  The Third Revolution in Sequencing Technology. , 2018, Trends in genetics : TIG.

[10]  Michalis E. Zervakis,et al.  A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals , 2018, Comput. Biol. Medicine.

[11]  Nicholas Genes,et al.  From smartphone to EHR: a case report on integrating patient-generated health data , 2018, npj Digital Medicine.

[12]  Chandra L. Theesfeld,et al.  Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk , 2018, Nature Genetics.

[13]  Yeong Shiong Chiew,et al.  Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them , 2018, BioMedical Engineering OnLine.

[14]  Abhinav Nellore,et al.  Cloud computing for genomic data analysis and collaboration , 2018, Nature Reviews Genetics.

[15]  Jeffrey Dean,et al.  Scalable and accurate deep learning with electronic health records , 2018, npj Digital Medicine.

[16]  Thierry Kogej,et al.  Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks , 2017, ACS central science.

[17]  Laxmi Parida,et al.  Enhancing Next‐Generation Sequencing‐Guided Cancer Care Through Cognitive Computing , 2017, The oncologist.

[18]  Alioune Ngom,et al.  A review on machine learning principles for multi-view biological data integration , 2016, Briefings Bioinform..

[19]  Cory Y. McLean,et al.  Creating a universal SNP and small indel variant caller with deep neural networks , 2016, bioRxiv.

[20]  Terry Anthony Byrd,et al.  Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations , 2018 .

[21]  Scott Spangler,et al.  Artificial intelligence in neurodegenerative disease research : use of IBM Watson to identify additional RNA ‐ binding proteins , 2017 .

[22]  Ellen Heitzer,et al.  The potential of liquid biopsies for the early detection of cancer , 2017, npj Precision Oncology.

[23]  I. Norstedt,et al.  Enabling personalized medicine in Europe by the European Commission's funding activities. , 2017, Personalized medicine.

[24]  Heung-Il Suk,et al.  Deep Learning in Medical Image Analysis. , 2017, Annual review of biomedical engineering.

[25]  Bálint Antal,et al.  Image Data Resource: a bioimage data integration and publication platform , 2017, Nature Methods.

[26]  Anirban Basu,et al.  On blockchain-based anonymized dataset distribution platform , 2017, 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA).

[27]  Anne E Carpenter,et al.  Opportunities and obstacles for deep learning in biology and medicine , 2017, bioRxiv.

[28]  F. Arnaud,et al.  From core referencing to data re-use: two French national initiatives to reinforce paleodata stewardship (National Cyber Core Repository and LTER France Retro-Observatory) , 2017 .

[29]  A. Pang,et al.  Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications , 2017, Genome research.

[30]  H. Rehm Evolving health care through personal genomics , 2017, Nature Reviews Genetics.

[31]  Ronald N. Kalla,et al.  IBM Power9 Processor Architecture , 2017, IEEE Micro.

[32]  Viktor K. Jirsa,et al.  Individual brain structure and modelling predict seizure propagation , 2017, Brain : a journal of neurology.

[33]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[34]  Peter V. Coveney,et al.  Multiscale computing in the exascale era , 2016, J. Comput. Sci..

[35]  R. Appel,et al.  Funding knowledgebases: Towards a sustainable funding model for the UniProt use case , 2017, F1000Research.

[36]  Alfonso Valencia,et al.  The BLUEPRINT Data Analysis Portal. , 2016, Cell systems.

[37]  Charles E. Cook,et al.  Identifying ELIXIR Core Data Resources , 2016, F1000Research.

[38]  Chuan-Ming Liu,et al.  Big data stream computing in healthcare real-time analytics , 2016, 2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA).

[39]  Rajkumar Buyya,et al.  Ensuring Security and Privacy Preservation for Cloud Data Services , 2016, ACM Comput. Surv..

[40]  S. Marjanovic,et al.  Population-scale sequencing and the future of genomic medicine , 2016 .

[41]  Ying Chen,et al.  IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research. , 2016, Clinical therapeutics.

[42]  Ivo D Dinov,et al.  Volume and Value of Big Healthcare Data. , 2016, Journal of medical statistics and informatics.

[43]  Jon R Lorsch,et al.  Perspective: Sustaining the big-data ecosystem , 2015, Nature.

[44]  Gregory Ditzler,et al.  Multi-Layer and Recursive Neural Networks for Metagenomic Classification , 2015, IEEE Transactions on NanoBioscience.

[45]  B. Frey,et al.  Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning , 2015, Nature Biotechnology.

[46]  M. Schatz,et al.  Big Data: Astronomical or Genomical? , 2015, PLoS biology.

[47]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[48]  F. Collins,et al.  A new initiative on precision medicine. , 2015, The New England journal of medicine.

[49]  Michelle Dunn,et al.  The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data , 2014, J. Am. Medical Informatics Assoc..

[50]  Mark D. Lim,et al.  Consortium Sandbox: Building and Sharing Resources , 2014, Science Translational Medicine.

[51]  R. Kitchin,et al.  Big Data, new epistemologies and paradigm shifts , 2014, Big Data Soc..

[52]  Mona Singh,et al.  Computational solutions for omics data , 2013, Nature Reviews Genetics.

[53]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[54]  Alan L. Rector,et al.  Granularity, scale and collectivity: When size does and does not matter , 2006, J. Biomed. Informatics.

[55]  M. Cox,et al.  Application-controlled demand paging for out-of-core visualization , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).