Different aa-tRNAs are selected uniformly on the ribosome.

Ten E. coli aminoacyl-tRNAs (aa-tRNAs) were assessed for their ability to decode cognate codons on E. coli ribosomes by using three assays that evaluate the key steps in the decoding pathway. Despite a wide variety of structural features, each aa-tRNA exhibited similar kinetic and thermodynamic properties in each assay. This surprising kinetic and thermodynamic uniformity is likely to reflect the importance of ribosome conformational changes in defining the rates and affinities of the decoding process as well as the evolutionary "tuning" of each aa-tRNA sequence to modify their individual interactions with the ribosome at each step.

[1]  M. Yarus,et al.  The translational efficiency of tRNA is a property of the anticodon arm. , 1986, The Journal of biological chemistry.

[2]  O. Uhlenbeck,et al.  The 51-63 base pair of tRNA confers specificity for binding by EF-Tu. , 2007, RNA.

[3]  S. Ghosh,et al.  Internucleotide movements during formation of 16 S rRNA-rRNA photocrosslinks and their connection to the 30 S subunit conformational dynamics. , 2005, Journal of molecular biology.

[4]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[5]  M. Rodnina,et al.  Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions. , 2004, RNA.

[6]  M. Rodnina,et al.  Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. , 2003, Journal of molecular biology.

[7]  M. O'Connor,et al.  Mutations in the Intersubunit Bridge Regions of 23 S rRNA* , 2006, Journal of Biological Chemistry.

[8]  J. Doudna,et al.  Large-scale purification of a stable form of recombinant tobacco etch virus protease. , 2001, BioTechniques.

[9]  W. McClain,et al.  The importance of tRNA backbone-mediated interactions with synthetase for aminoacylation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M Yarus,et al.  tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble. , 1994, Journal of molecular biology.

[11]  M. Ermolaeva,et al.  Synonymous codon usage in bacteria. , 2001, Current issues in molecular biology.

[12]  M Yarus,et al.  Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. , 1989, Journal of molecular biology.

[13]  Rachel Green,et al.  Mutational analysis reveals two independent molecular requirements during transfer RNA selection on the ribosome , 2007, Nature Structural &Molecular Biology.

[14]  J. Elf,et al.  Selective Charging of tRNA Isoacceptors Explains Patterns of Codon Usage , 2003, Science.

[15]  O. Uhlenbeck,et al.  Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation , 2001, Science.

[16]  R. Buckingham Codon context , 2005, Experientia.

[17]  T. Pape,et al.  Induced fit in initial selection and proofreading of aminoacyl‐tRNA on the ribosome , 1999, The EMBO journal.

[18]  V. Ramakrishnan,et al.  Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form , 2002, Cell.

[19]  C. Kurland,et al.  Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. , 1996, Journal of molecular biology.

[20]  M. Ibba,et al.  Phenylalanyl-tRNA synthetase editing defects result in efficient mistranslation of phenylalanine codons as tyrosine. , 2007, RNA.

[21]  K. Jensen,et al.  Translation rates of individual codons are not correlated with tRNA abundances or with frequencies of utilization in Escherichia coli , 1989, Journal of bacteriology.

[22]  Paul F Agris,et al.  The role of modifications in codon discrimination by tRNALysUUU , 2004, Nature Structural &Molecular Biology.

[23]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[24]  Marina V. Rodnina,et al.  Structural Basis for the Function of the Ribosomal L7/12 Stalk in Factor Binding and GTPase Activation , 2005, Cell.

[25]  O. Uhlenbeck,et al.  Contribution of the esterified amino acid to the binding of aminoacylated tRNAs to the ribosomal P- and A-sites. , 2004, Biochemistry.

[26]  Tina Daviter,et al.  A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. , 2006, Molecular cell.

[27]  Malte Beringer,et al.  Peptide bond formation does not involve acid-base catalysis by ribosomal residues , 2006, Nature Structural &Molecular Biology.

[28]  M. Rodnina,et al.  Codon‐dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. , 1995, The EMBO journal.

[29]  M. Rodnina,et al.  Codon reading by tRNAAla with modified uridine in the wobble position. , 2007, Molecular cell.

[30]  Scott M Stagg,et al.  Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy , 2003, Nature Structural Biology.

[31]  Sergey Steinberg,et al.  Compilation of tRNA sequences and sequences of tRNA genes , 2004, Nucleic Acids Res..

[32]  O. Uhlenbeck,et al.  The affinity of elongation factor Tu for an aminoacyl-tRNA is modulated by the esterified amino acid. , 2004, Biochemistry.

[33]  M. Yarus,et al.  Mutation in the D arm enables a suppressor with a CUA anticodon to read both amber and ochre codons in Escherichia coli. , 1986, Journal of molecular biology.

[34]  J. Elf,et al.  Over expression of a tRNA(Leu) isoacceptor changes charging pattern of leucine tRNAs and reveals new codon reading. , 2005, Journal of molecular biology.

[35]  H. Noller,et al.  A functional pseudoknot in 16S ribosomal RNA. , 1991, The EMBO journal.

[36]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[37]  M. Yarus,et al.  tRNA structure and ribosomal function. II. Interaction between anticodon helix and other tRNA mutations. , 1994, Journal of molecular biology.

[38]  Lei Sun,et al.  Evidence that substrate‐specific effects of C5 protein lead to uniformity in binding and catalysis by RNase P , 2006, The EMBO journal.

[39]  Bernard Rees,et al.  Structural basis for messenger RNA movement on the ribosome , 2006, Nature.

[40]  N. Seeman,et al.  The general structure of transfer RNA molecules. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Sørensen,et al.  Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. , 1991, Journal of molecular biology.

[42]  O. Uhlenbeck,et al.  The tRNA Specificity of Thermus thermophilus EF-Tu , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M Yarus,et al.  Codon contexts from weakly expressed genes reduce expression in vivo. , 1989, Journal of molecular biology.

[44]  S. Joseph,et al.  Simulating movement of tRNA into the ribosome during decoding. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Yokoyama,et al.  Codon-reading specificity of an unmodified form of Escherichia coli tRNA1Ser in cell-free protein synthesis. , 1996, Nucleic acids research.

[46]  Yuko Yamada,et al.  Bacillus subtilis tRNA(Pro) with the anticodon mo5UGG can recognize the codon CCC. , 2005, Biochimica et biophysica acta.

[47]  A. Oleinikov,et al.  Structural and functional domains of Escherichia coli ribosomal protein L7/L12. The hinge region is required for activity. , 1993, The Journal of biological chemistry.

[48]  O. Uhlenbeck,et al.  Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. , 2004, Molecular cell.

[49]  F. Jurnak,et al.  Kinetic studies of Escherichia coli elongation factor Tu-guanosine 5'-triphosphate-aminoacyl-tRNA complexes. , 1985, Biochemistry.

[50]  Paul Schimmel,et al.  A simple structural feature is a major determinant of the identity of a transfer RNA , 1988, Nature.

[51]  A. Parmeggiani,et al.  Relevance of histidine‐84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: Its substitution by glutamine and alanine , 1995, FEBS letters.

[52]  J. Elf,et al.  Selective charging of tRNA isoacceptors induced by amino‐acid starvation , 2005, EMBO reports.

[53]  M. Yarus,et al.  Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range. , 1989, Journal of molecular biology.

[54]  J. Miller,et al.  Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. , 1990, Journal of molecular biology.

[55]  R. Thompson,et al.  Codon choice and gene expression: synonymous codons differ in their ability to direct aminoacylated-transfer RNA binding to ribosomes in vitro. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Sørensen,et al.  The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. , 1998, Journal of molecular biology.

[57]  M. Rodnina,et al.  Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. , 2004, Molecular cell.

[58]  G. W. Hatfield,et al.  Codon Pair Utilization Biases Influence Translational Elongation Step Times (*) , 1995, The Journal of Biological Chemistry.

[59]  A. E. Dahlberg,et al.  The involvement of two distinct regions of 23 S ribosomal RNA in tRNA selection. , 1995, Journal of molecular biology.

[60]  F. Jurnak,et al.  Relative affinities of all Escherichia coli aminoacyl-tRNAs for elongation factor Tu-GTP. , 1984, The Journal of biological chemistry.

[61]  R. Green,et al.  An Active Role for tRNA in Decoding Beyond Codon:Anticodon Pairing , 2005, Science.

[62]  L. Breeden,et al.  Actions of the anticodon arm in translation on the phenotypes of RNA mutants. , 1986, Journal of molecular biology.

[63]  O. Uhlenbeck,et al.  Exploring the specificity of bacterial elongation factor Tu for different tRNAs. , 2007, Biochemistry.

[64]  O. Uhlenbeck,et al.  Modulation of tRNAAla identity by inorganic pyrophosphatase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.